WATER RELEASE FACILITY AT KENNEY DAM UPDATED CONCEPTUAL LAYOUT AND COST ESTIMATE

Prepared for:

NECHAKO ENVIRONMENTAL ENHANCEMENT FUND MANAGEMENT COMMITTEE

by:

Water Release Facility at Kenney Dam Updated Conceptual Layout and Cost Estimate

Original signed and sealed by C. J. Wilson, 18 May 2001

Prepared By:

Chris Wilson, P.Eng. Project Manager

Original signed and sealed by N. Heidstra, 18 May 2001

Reviewed By:

Neil Heidstra, P.Eng. Chief Engineer

TABLE OF CONTENTS

SECTI	ON	TITLE P	AGE
DISCLAIMER iii			
1.	INTRC 1.1 1.2 1.3	DDUCTION Terms Of Reference Background Scope Of Work	1-1 1-1
2.	CRITE 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	RIA Basic Configuration Operating Regime Hydraulic Capacities Seasonal Operation Redundancy Temperature Control Total Dissolved Gas (TGP) Hydroelectric Generation	2-1 2-1 2-2 2-4 2-4 2-4 2-5
3.	CONC 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	EPTUAL LAYOUT General Surface-Water Intake Channel Deep-Water Intakes, Pipelines and Culverts High-Level Outlet Low-Level Outlet Instrumentation and Controls Operator Accommodation Skeleton Hydro Bay Miscellaneous Works	3-1 3-1 3-2 3-2 3-4 3-7 3-7 3-8
4.	DISCU 4.1 4.2 4.3	JSSION OF LAYOUT Mixing Facility Vorticity Other Concepts	4-1 4-2
5.	CONS 5.1 5.2 5.3	TRUCTION PLANNING Site Access Temporary Works Construction Planning	5-1 5-1
6.	COST 6.1 6.2 6.3	ESTIMATE AND SCHEDULE Construction Schedule Cost Estimate Operating and Maintenance Costs	6-1 6-1

TABLE OF CONTENTS (CONTINUED)

REFERENCES

LIST OF TABLES

Table No.

6-1 Summary of Estimated Construction Cost

LIST OF FIGURES

Figure No.

- 1 Conceptual Layout Case E Plan
- 2 Conceptual Layout Case E Profile
- 3 Conceptual Layout Case E Low-Level Outlet, Regulating Structure and Skeleton Hydro Bay
- 4 Preliminary Construction Schedule

LIST OF APPENDICES

Appendix

A Details of Cost Estimate

DISCLAIMER

This report was prepared by Klohn Crippen solely for the purposes of the Management Committee of the Nechako Environmental Enhancement Fund (NEEF). All other parties are third parties.

Neither NEEF nor Klohn Crippen, guarantees or warrants to any third party, either expressly or by implication:

- (a) the accuracy, completeness or usefulness of,
- (b) the intellectual or other property rights of any person or party in, or
- (c) the merchantability, safety or fitness for purpose of,

any information, product or process disclosed, described or recommended in this report.

Neither NEEF nor Klohn Crippen accepts any liability of any kind arising in any way out of the use by a third party of any information, product or process disclosed, described or recommended in this report, nor do NEEF or Klohn Crippen accept any liability arising by way of reliance by a third party upon any information, statement or recommendation contained in this report. Should third parties use or rely on any information, product or process disclosed, described or recommended in this report.

1. INTRODUCTION

1.1 TERMS OF REFERENCE

This report presents an updated conceptual layout and cost estimate for a water release facility at Kenney Dam. The study was commissioned by the Management Committee of the Nechako Environmental Enhancement Fund (NEEF) and was undertaken under Provincial Government Contract WMB01-073, pursuant to a proposal submitted by Klohn Crippen in January 2001.

1.2 BACKGROUND

In 1995, as part of the deliberations of the joint Province/Alcan Kenney Dam Release Facility (KDRF) Working Group, Klohn Crippen developed conceptual layouts and preliminary cost estimates for nine alternatives for a water release facility at Kenney Dam to meet a wide range of possible discharge requirements and performance objectives. The aim was to indicate the order-of-magnitude cost of achieving the various performance objectives, and an appropriately simple methodology was used. Wherever possible, project components were based on those developed for the KDRF which Klohn Crippen had designed as part of the Kemano Completion Project (KCP), but with the size adjusted as necessary for the increased flow required. The costs of those components were derived from estimates which others had prepared for the KCP KDRF components by pro-rating in proportion to the increase in size, and applying appropriate escalation to convert the costs to 1995 dollars. In some cases, new components had to be developed. In these cases, approximate proportions were developed and quantities of major work and materials were then priced at rates obtained from the KCP KDRF estimates, where rates for comparable work were When rates for comparable work were not available, rates were available. estimated based on experience on other projects. The conceptual alternatives and costs were presented in a joint Province/Alcan report in April 1996⁽¹⁾. The alternatives were referred to by a number, generally in the order in which they were suggested by the Working Group. In some cases, a letter was added to indicate a variant, i.e. Alternative 4A was a variant of Alternative 4.

Subsequent to the publication of the Working Group report, and as a result of the 1997 Agreement between Alcan and the Province, the Nechako Environmental Enhancement Fund (NEEF) was established. The Nechako Watershed Council was also formed. When these organizations requested presentations on the options for a water release facility at Kenney Dam, it was decided to re-arrange the alternatives in a more logical order based generally on the increase in potential benefit provided, although discharge capacity was also a factor. Some additional concepts had also been developed since the Working Group report. Accordingly, a new alpha-numeric reference system was used, Case A representing the simplest facility and Case H representing the largest facility. The budget costs remained at the 1995 level.

The Management Committee of NEEF has been considering the various configurations of a water release facility at Kenney Dam as a possible candidate for the funds committed to NEEF by Alcan and the Province. The Management Committee's consideration of the various options is nearing completion and a preferred basic configuration, now known as Case E (Alternative 4A in the 1995 KDRF Working Group report), has been selected, with some desired modifications. In view of the modifications, and the somewhat rudimentary nature and 1995 dollar level of the previous cost estimates, the Management Committee required an updated layout and cost estimate for the preferred configuration. The updated layout and cost estimate are the subject of this report.

1.3 SCOPE OF WORK

The work involved four principal tasks:

- refining of the conceptual layout for Case E to suit the components and the flow and operating regimes identified by the Management Committee, including review of the capacity of the low level outlet;
- measurement of the quantities of major work and materials;
- a pre-feasibility level estimate of the cost of the facility in 2001 Canadian dollars; and
- the preparation of this report.

The Management Committee subsequently requested that Klohn Crippen provide an estimate of the annual operating and maintenance cost of the water release facility.

2. CRITERIA

2.1 BASIC CONFIGURATION

The basic water release facility (Case E) envisaged by the Management Committee would consist of:

- a surface-water intake channel;
- deep-water intakes and pipelines;
- a high-level outlet regulating structure, capable of releasing water from surface and deep sources either one at a time or together, and a surface spillway equipped with a flip bucket energy dissipator; and
- a low-level outlet with the capability of releasing water from surface and deep sources either one at a time or together, and equipped with one or more hollow-cone valves for energy dissipation and dissolved gas control.

As an option, the Management Committee requested that a facility (mixing chamber) be included in the high-level outlet to mix the water from deep and surface sources as it is released (to avoid the potential temperature shears associated with the release of separate streams of water into the spillway).

2.2 OPERATING REGIME

The water release facility is envisaged by the Management Committee to operate in conjunction with the Skins Lake Spillway, which would continue to provide flows to the Murray-Cheslatta system. The hydrograph for the Murray-Cheslatta system would follow a natural form with a maximum annual average flow of 15 m^3 /s. Assuming that the natural annual inflow to the Murray-Cheslatta system averages about 5 m^3 /s, this means that the Skins Lake Spillway would release a maximum annual average of 10 m^3 /s, excluding releases required for the management of excess reservoir inflows.

Assuming that the annual average of base flow releases from the Nechako Reservoir continues to be 36.8 m³/s (as required under the Short Term Water Allocation [STWA] of the 1987 Agreement between Alcan and the federal and provincial governments), base flow releases from a water release facility at Kenney Dam would average 26.8 m³/s. Base flows measured below Cheslatta Falls are envisaged by the Management Committee to follow a similar seasonal variation to those currently used by the Nechako Fisheries Conservation Program (NFCP). The Kenney Dam facility base flow releases would be the base releases from the reservoir required by the STWA minus the flows being released from Skins Lake Spillway, according to the season.

2.3 HYDRAULIC CAPACITIES

2.3.1 Low-Level Outlet

A low-level outlet capacity of 60 m³/s was established for the conceptual layouts developed in 1995. This capacity stemmed from two principal assumptions: a) that all the STWA base flows would be released from the facility at Kenney Dam, and b) that it would be preferable for operational reasons and dissolved gas control to release all base flows through the facility's low-level outlet. Consequently, the low-level outlet would need to have a capacity of at least 54.6 m³/s, the maximum of the mean monthly releases (in April) indicated in Column I of Schedule "C" of the 1987 Agreement, the so-called "default" releases for the STWA. A capacity of 60 m³/s met this requirement and also provided for some release of excess inflows in winter, assuming that Skins Lake Spillway would not be used.

Because Skins Lake Spillway is now envisaged to continue to release a proportion of the STWA base flow, the size of a low-level outlet at Kenney Dam could potentially be reduced by the amount which would be released at Skins Lake Spillway. However, there is another factor to consider, namely, cooling water. We understand from discussions with Triton Environmental Consultants (Clyde Mitchell personal communication), which has been studying various cooling water regimes for NEEF, that the base cooling water release would probably be 60 m^3/s , and that the next level of release in response to a forecast increase in downstream water temperatures would probably be in the order of 90 m³/s, a 50% increase. If the low-level outlet does not have the capacity to release the base cooling water release, then this release would have to be made through the high-level outlet and spillway. However, because of other requirements, the high-level outlet gates would be relatively large. Furthermore, they would free discharge to atmosphere under full reservoir head. As a consequence of these conditions, a release of 60 m³/s would require relatively small gate openings. Also, in most cases, cooling water releases would require a proportion to come from both deep and surface sources, according to the temperature of each source. When the potential range of temperatures of the two sources, and hence the proportion of water from each source to produce a mixed temperature of 10°C, is taken into consideration, the opening of one or other of the high-level outlet gates would become impracticably small from the perspective of accurate temperature regulation of a 60 m³/s release. For a release of 90 m^3/s , this problem would be alleviated.

In contrast to the high-level outlet gates, the low-level outlet gates would not only be smaller, but, more importantly, they would not free discharge to atmosphere; the gates would discharge into a pressurized conduit in which primary flow regulation would be provided by the outlet hollow-cone valve(s). The gates would act simply as restrictions, producing variable head losses, and hence varying the amount of water drawn from each source. In operation, one or other of the gates would generally be fully open, and the other partially open.

Regulation of flow, and hence temperature, would therefore be achieved with relatively large gate openings. Consequently, if base cooling water releases would be 60 m^3 /s and accurate temperature control is required, then the low-level outlet should have a capacity of 60 m^3 /s.

It must be noted that although the Management Committee is envisaging seasonal flow variations similar to those currently used by the NFCP, the NWC is understood to be considering a release of 68 m³/s in the second half of May. This release would exceed the capacity of the low-level outlet in the present layout. However, because this is outside the cooling water period, and temperature control would presumably not therefore be required, the May release could be made from the high-level outlet. Even if a hydroelectric generating facility were to be added to the facility, requiring, for example 25 m³/s, then the 43 m³/s balance of the May release could still be made through the high-level outlet. Nevertheless, there are complications associated with the possibility of a 68 m³/s release in May, as discussed in Section 2.6.

2.3.2 High Level Outlet

A high-level outlet spillway capacity of 450 m³/s was established for the conceptual layout developed in 1995. This was the capacity estimated to be required to reduce the frequency of operation of Skins Lake Spillway to release excess inflows to no more than once in 200 years on average, and thereby afford an opportunity for the restoration of the Murray-Cheslatta system. The estimate was based on a preliminary evaluation of the combined probabilities of initial reservoir levels and freshet inflows. If releases from Skins Lake Spillway would continue, then the capacity of the spillway at the Kenney Dam facility could theoretically be reduced by the amount permitted from Skins Lake Spillway. However, in view of the preliminary nature of the capacity estimate, the 450 m³/s capacity of the high-level outlet spillway has been retained in the updated layout.

2.3.3 Cooling Water Capacity

For the 1995 conceptual layouts with selective withdrawal capability, a cooling water capacity of 170 m^3 /s at 10° C from either or both surface and deep-water sources was assumed, based on the requirement for the KCP KDRF. We understand that preliminary studies for the Management Committee by Triton indicate that this capacity could possibly be reduced for the non-KCP flow regime. However, the capacity of 170 m^3 /s has been retained for the updated layout.

2.3.4 Reservoir Levels

The capacities for base and maximum cooling flows are to be available at any reservoir level within the current operating range, plus the additional range that might occur as a result of the dredging of Tahtsa Narrows. The maximum capacity of the spillway (450 m^3 /s) is to be available at the reservoir levels at

which excess inflows would be released, including requirements for pre-spill. Based on routings of large excess inflows, including the Probable Maximum Flood (PMF), a pre-spill reservoir level of El. 851 m was used for the present layout.

2.4 SEASONAL OPERATION

The deep and surface water intakes for the low-level outlet, and the low-level outlet itself are to be capable of operating 12 months of the year. The surface water intake for the high-level outlet, and the high-level outlet and spillway are to be capable of operating in ice-free months, deemed to include non-freezing weather conditions.

2.5 REDUNDANCY

The Management Committee required that consideration be given to providing sufficient redundancy in the surface spillway design such that maintenance could be carried out on the spillway gates and sufficient water could be released at the same time to meet the requirements of the NFCP. This was deemed to mean that the surface spillway should have the same degree of redundancy as provided in the KCP KDRF, which was previously approved by the NFCP.

2.6 **TEMPERATURE CONTROL**

The Management Committee requested that Klohn Crippen provide guidance as to the degree of temperature control to be provided. We proposed that the target criteria for temperature control be the same as those for the KCP KDRF, namely:

- the controlled mean daily temperature of water releases during the cooling water period should not be less than 10.0°C nor the instantaneous temperature be less than 9.5°C; and
- during transitions between the surface and deep sources, and immediately prior to and following the cooling water period, temperatures should decrease no faster than 1°C/day and increase no faster than 2°C/day.

The extent to which the second criterion can be met depends upon the relative configuration of the low-level and high-level outlet surface-water intakes, because the greatest potential for short-term temperature variations exceeding those specified occurs when there is a need for cooling water releases to increase beyond the base flow capacity of the low-level outlet, at which time the supply of surface water would be transferred from the low-level intake to the high-level intakes. Because of the constraints of topography, hydraulic requirements and the requirements of dam safety, there is very limited latitude in which to modify the relative configuration of the surface-water intakes of the

2-4

facility. Nevertheless, the intakes have been set as high and as close to the same level as possible, consistent with other requirements.

The KCP KDRF low-level outlet surface-water intake was also equipped with a retractable skimming weir. The principal function of this weir was to enable the warmest surface water to be withdrawn during the spring and early summer, when the water in the body of the reservoir is still relatively cold. The skimming weir also provided additional temperature control capability during the temperature ramping immediately prior to the cooling water period. A skimming capability has been incorporated in the low-level outlet surface-water intake of the updated conceptual layout. However, hydraulic and structural requirements indicated that it would not be practicable to provide skimming capability for the full 60 m³/s capacity of the low-level outlet. This should not be an issue for the release schedules that we understand are being considered, because releases would not appear to exceed 30 m³/s during the period when warmer water might be desired, with one important exception. If a release of 68 m^3 /s is required in the last half of May, then the water could be colder during this period than before and after the period, assuming that the skimming weir is deployed, and depending upon the degree of surface warming actually experienced, which would depend upon climatic conditions.

We have assumed that the volume of the cold water "reservoir" required would be the same as for the KCP KDRF, i.e. the deep water intakes would have to be at the same elevation as those for the KCP KDRF. The Management Committee requested sufficient redundancy in the facility to enable maintenance to be carried out, while still meeting the NFCP requirements. Again, this was deemed to mean that the cooling water release components should have the same degree of redundancy as provided in the KCP KDRF, which was previously approved by the NFCP.

2.7 TOTAL DISSOLVED GAS (TGP)

The level of total dissolved gas (TGP) required in the discharged water (i.e. in the tailrace) is not known at this time. The spillway is to be equipped with a flip bucket which discharges water into the Nechako canyon efficiently over the normal flow ranges and minimizes erosion and downstream damage. The normal flow range has been deemed to mean up to at least 170 m^3 /s. It has been assumed that some erosion would be tolerable at the infrequent maximum 450 m³/s discharge.

2.8 HYDROELECTRIC GENERATION

The Management Committee did not require a hydroelectric generating facility to be included, but did request that the design and construction of the facility be such as to not preclude the addition of power generation.

Construction of a generating facility after the commissioning of the water release facility would require the construction of a temporary cofferdam adjacent to the portal of the existing dam construction diversion tunnel to permit the excavation of the powerhouse foundations in what would then be a functioning waterway. The powerhouse would have to be located further away from the tunnel portal and probably set back into the right bank to provide space for the cofferdam, which would increase the cost. In addition, based on the observation of substantial boulders in the floor of the canyon around the diversion tunnel portal, difficulties would almost certainly be encountered in sealing the cofferdam and dewatering the powerhouse excavation. In view of these factors, and the possibility that they could preclude the addition of power generation, the Management Committee requested that the conceptual layout include a provision for the future addition of hydroelectric generation.

3. CONCEPTUAL LAYOUT

3.1 GENERAL

The general arrangement of the water release facility is shown on Figures 1, 2 and 3. The facility would consist of:

- a surface-water intake channel;
- two deep-water intakes, pipelines and culverts;
- a high-level outlet;
- a low-level outlet;
- appropriate instrumentation and controls;
- operator accommodation;
- a skeleton hydro bay; and
- miscellaneous other works.

These components are described in more detail in the following sections.

3.2 SURFACE-WATER INTAKE CHANNEL

An open rock cut channel excavated in the left abutment of the dam would draw water from the surface source. The size and curved alignment of the channel are necessary to convey the water at low velocity around the left end of the dam to the high-level outlet regulating structure, where it would be released at high velocity into the spillway chute. A tunnel is considered to be impracticable because of the size required to accommodate the deep-water conduits as well as the maximum discharge of the facility.

The majority of the channel would have an excavated invert width of 10.5 m and stepped vertical sides. The first step would occur 6 m above the invert and thereafter at 10 m intervals. The first step or berm would be 6 m wide and thereafter the berms would be 3 m wide. The relatively shallow overburden would be excavated with a set back from the top of the rock cut.

The majority of the channel would be excavated in the dry behind a temporary rock plug at the entrance. The temporary rock plug and overlying overburden would be excavated underwater. The sides of the channel excavated in the dry would be bolted and protected with shotcrete, as necessary. The sides excavated underwater would be unsupported and loose rock would be removed. The width of the channel would generally be increased in this section to protect the deep-water pipelines from any rock falls. At the entrance to the channel, where the height of the cuts is least, the width would be reduced to discourage the intrusion of deeper, colder, water into the channel.

3.3 DEEP-WATER INTAKES, PIPELINES AND CULVERTS

Water would be withdrawn from depth in the reservoir by two steel bellmouth intakes and would be conveyed to the bottom of the surface-water channel by two 4.17-m-diameter rigid steel pipelines. The intakes would be equipped with coarse trashracks to exclude large submerged debris. The pipelines would be externally stiffened to withstand the differential pressure and would be supported at two points on the left abutment of the dam and at a third point within the surface-water channel. The pipelines would end just beyond the location of the temporary rock plug and water would be conveyed from there to the regulating structure by twin reinforced concrete culverts. A short section of the pipes would be constructed in the dry integrally with the concrete culverts to facilitate subsequent connection of the pipelines after removal of the temporary plug.

Each pipeline would have a capacity of 85 m³/s at any reservoir level within the foreseeable operating range, including allowances for increased hydraulic losses due to partial trashrack blockage and deterioration of the pipe surface condition.

3.4 HIGH-LEVEL OUTLET

3.4.1 General

The high-level outlet would be used to release large cooling flows up to a maximum of 170 m^3 /s, and to make releases necessary to manage excess inflows to the reservoir, up to a maximum of 450 m^3 /s. The outlet would consist of the regulating structure and the chute spillway.

3.4.2 Regulating Structure

The regulating structure would be constructed of reinforced concrete and would have a maximum height above the foundation of 28 m and a maximum width of 28.5 m. The structure would contain two 3.7-m-wide by 3.9-m-high surface-water passages and two 2.5-m-wide by 4.3-m-high deep-water passages. Each passage would be equipped with an electrically-operated bonneted fixed-wheel regulating gate and each pair of passages would share a fixed-wheel bulkhead/emergency closure gate. The surface-water passages would be angled towards the deep-water passages (5° in the current layout) to cause the jets to impinge upon one another to initiate mixing.

The structure would also contain a control room, a light workshop, and storage and toilet facilities. The structure would be provided with electrical power by diesel generators housed in a separate adjacent building. A gantry crane would be provided to install and remove the bulkhead gates, and to maintain all the gates.

The situation of the structure in a through-going open cut between the reservoir and the canyon downstream, requires that the structure be designed as a dam,

and meet the safety requirements of a dam. These requirements include adequate watertightness and stability. Adequate stability, in turn, requires that the structure have sufficient mass to provide an adequate factor of safety against sliding under the imposed hydrostatic, hydrodynamic, seismic and uplift forces, and that the line of action of that mass be sufficiently far upstream that tensile stresses do not occur at the upstream edge of the foundation. Bearing pressures must also be within allowable limits everywhere within the foundations.

For watertightness, and to reduce uplift pressures, the structure would be provided with a grout curtain, which would extend to the existing grout curtain of the dam. Adequate mass would be provided by flooded ballast compartments upstream of the central gate block and by rock-filled ballast compartments downstream of the gate block. The sides of the facility would also converge in the downstream direction to take advantage of the resistance provided by the surrounding rock mass. Additional stability could be provided, if necessary, by connecting the structure to the anchors provided in the walls of the rock cut during excavation.

3.4.3 Spillway

The regulating structure would discharge into a chute spillway. The spillway would initially be approximately 20 m wide, the outside walls converging to a constant width of 12 m in approximately 69 m (based on a wall convergence angle of 4° to the centre line). A central wall in the upstream portion of the converging section would provide two separate bays each capable of discharging both surface and deep water. thereby providing for emergency maintenance/repair of one set of outlets without interrupting the operation of the other set. The total length of the spillway would be approximately 274 m. The spillway would have an initial slope of 15H:1V, followed by the major portion of the chute at 6.5H:1V, and would end with a vertical circular curve of 130 m radius, and a short section at 1.5H:1V.

The spillway would be equipped with a flip bucket energy dissipator with a radius of 15 m and a lip angle of 25°. The invert of the bucket would be set 2.5 m above the maximum tailwater level at a discharge of 450 m³/s estimated to be approximately EI. 769.9 m. The relatively shallow lip angle is necessary both to restrict the throw of the jet and to afford an appropriately shallow entry angle into the plunge pool, and thereby restrict the depth of plunge and the associated increase in dissolved gas. The flip bucket would also flare in the downstream direction to spread the jet, thereby increasing the energy dissipation and the oblique angle of the spillway to the canyon wall restrict the amount of spread that can be achieved. Dentations could be added to the bucket if a model test indicates that this would be beneficial in fraying the jet without excessive spread.

Despite the shallow lip angle and the low setting of the bucket relative to the tailwater level, the maximum throw of the jet is estimated to be in the order of 90 m. To minimize subsequent erosion, a plunge pool would be pre-excavated.

3.5 LOW-LEVEL OUTLET

3.5.1 Basis of Layout

There has been extensive discussion of the need or otherwise for a low-level outlet at a water release facility, primarily because of the substantial cost involved. However, a low-level outlet serves several functions, namely:

- assuming an appropriate means and location for the discharge, it provides a means of releasing water during the winter, when substantially below zero freezing temperatures occur at Kenney Dam;
- it provides an alternative means of releasing water to allow maintenance of the high-level outlet;
- if appropriately sized and equipped, it allows almost all base releases to be discharged with control of dissolved gas;
- if appropriately equipped, it provides better temperature control, both prior to and during the cooling water period; and
- it provides the opportunity to add hydroelectric generation.

The first two functions are considered essential if the facility is required to release water continuously year round. The remaining three functions could be regarded as essential, desirable or discretionary, depending upon point of view. All but the first function could be provided equally by an outlet constructed predominantly on the surface. However, when the topography and arrangement of the structures are considered, a surface outlet would itself involve a substantial amount of excavation and steel pipe penstock to provide an outlet at the foot of the spillway near the diversion tunnel portal. Even if the opportunity for hydroelectric generation is foregone and the penstock is replaced with a second, smaller, spillway chute, the amount of reinforced concrete would be substantial.

However there are other factors which argue against a predominantly surface outlet, even one which could ultimately enter the diversion tunnel near its downstream end and thereby conceivably be equipped for winter operation. These factors concern the siting of the intake for the outlet. To provide a surface outlet, and avoid tunnelling, the intake would have to be situated immediately adjacent to the main regulating structure. In the present concept, the regulating structure has been set as far downstream as possible, based on the estimated subsurface rock contours. Adding another intake structure adjacent to the regulating structure would require that both be moved substantially further upstream, requiring a reduction of the radius of the surface-water channel and

forcing it further into the dam abutment, with associated increase in cost. In addition, the intake would now be at the end, rather than the beginning of the surface-water channel. Eddies resulting from the curved geometry of the channel would probably have mixed the water and produced an essentially isothermal condition by the time the water reached the intake, thereby probably precluding any possibility of "skimming" warmer surface water in the spring.

Although a cost estimate for a predominantly surface outlet has not been prepared, it is our opinion that the cost would be at least comparable to that of the proposed underground layout.

The proposed underground layout would consist of an inlet and regulating structure, an upper and lower tunnel and connecting inclined shaft, and two pressure pipelines and hooded hollow-cone valves, with butterfly guard valves.

3.5.2 Inlet/Regulating Structure

The inlet/regulating structure would be situated as close to the entrance of the surface water approach as possible while leaving sufficient distance between it and the temporary rock plug to enable the plug to be removed without damaging the structure. The structure would contain the surface-water intake, equipped with an adjustable skimming weir and trashrack, the surface water passage, and the deep-water passage, which would draw water either from the side of the deep-water culverts or from a gallery excavated below them. Each of the passages would be equipped with an electrically-operated bonneted fixed-wheel regulating gate, and a bulkhead gate.

The primary function of the regulating gates would be to control the outflow temperature because flow regulation would be provided by the outlet hollow-cone valves.

Currently it is envisaged that each bulkhead gate would be installed and removed with a dedicated cable hoist, and that all the gates would be maintained using a mobile crane. However, the rails for the regulating structure gantry crane could probably be arranged to enable the gantry crane to be used. Alternatively the gantry crane could be equipped with steered rubber-tired wheels similar to those used on boatyard travel hoists.

3.5.3 Tunnels and Shaft

The surface and deep-water passages would discharge via a concrete-lined transition into a short upper tunnel, an inclined shaft and a lower tunnel. The shaft would be inclined at 55° and would be concrete lined. The shaft would be circular in cross section with a lined diameter of 3.4 m. The lower tunnel would be driven to an inverted U section but would have a circular concrete lining the same diameter as shaft. The downstream section of the lower tunnel adjacent to

the dam construction diversion tunnel would be steel lined. The steel lining would extend into the diversion tunnel as a pressure pipeline.

Contact, consolidation and curtain grouting would be undertaken, as necessary.

3.5.4 Pressure Pipelines and Valves

Soon after entering the diversion tunnel and after a 60° bend, the 3.4-m-diameter pipeline would bifurcate into two 2.2-m-diameter pipelines. One pipeline would be relatively short and the other pipeline would extend to the downstream portal of the diversion tunnel. The pipelines would be provided with appropriate steel ring stiffeners, and concrete anchor blocks, and the pipeline to the portal would be surrounded in concrete.

Each pipeline would be equipped with a 1.2-m-diameter hollow-cone valve to dissipate energy and control dissolved gas. Each valve would be equipped with a separately mounted bell-shaped hood. Air supply to the valve would be provided through an annular space between the valve and the upstream end of the hood. The valve and hood would be anchored with a thrust block and a small control cubicle would be provided on the top of the block to house local operation controls. To enable independent maintenance/repair of the hollow-cone valves, a butterfly guard valve would be provided upstream of each valve.

The pipeline arrangement within the diversion tunnel is somewhat awkward, and a portion of the right wall of the tunnel has to be excavated to make room. However, this is necessary to provide a symmetrical discharge channel for the first, interior, valve. The staggered valve arrangement was selected rather than positioning both valves side by side inside the tunnel for two reasons:

- access could not otherwise be provided to the valves except by suspending an enclosed walkway from the roof of the tunnel or driving a separate tunnel, both of which were deemed to be impractical, whereas the concrete surround to the second pipeline provides the base for a walkway along the wall of the tunnel, the same as that included in the KCP KDRF; and
- the arrangement provides for the possible addition of hydroelectric generation with minimal disruption to the use of the interior valve, and the disruption has been further reduced, if not avoided, by providing a blind bifurcation in the pipeline upstream of the exterior valves, to which a future turbine branch could be connected.

The exterior hollow-cone valve is envisaged to be provided with a hood to limit the extent of erosion protection measures, and the interference with the powerhouse tailrace if a hydroelectric generating facility is added in the future.

3.5.5 Diversion Tunnel

A section of the floor of the existing diversion tunnel would be concrete lined to resist the impact of the interior valve jet. Access to the valve would be provided by a walkway on top of the concrete pipe surround on the right wall of the tunnel. The section of the walkway closest to the valve would be enclosed to provide protection against spray from the valve.

The downstream portal of the diversion tunnel would be equipped with a flexible curtain wall to reduce the inflow of sub-zero air and to encourage the recirculation of air within the tunnel to prevent icing in winter. Separate ventilation would be provided for the control cubicle.

3.6 INSTRUMENTATION AND CONTROLS

Instrumentation would include:

- sensors to monitor the reservoir level, and the water level in the low-level outlet surface-water intake downstream of the skimming weir (to warn of excessive differential water levels);
- sensors to monitor the temperature of the water in each of the four highlevel outlet water passages and the two low-level outlet water passages;
- a sensor in the Nechako River downstream of the facility to monitor release temperatures;
- sensors to measure the internal pressure in the deep-water pipelines, to determine the head on the gates, and to monitor the differential external pressure on the pipelines to warn of partial obstruction of the intake trashracks;
- gate and valve position indicators and limit switches; and
- intrusion sensors and alarms.

The regulating gates and hollow-cone valves would be equipped with controls to enable them to be operated locally, or remotely from the control room in the regulating structure.

3.7 OPERATOR ACCOMMODATION

The facility would require a full-time operator/attendant and domestic family accommodation would be provided adjacent to the structure, together with accommodation for a maintenance crew.

3.8 SKELETON HYDRO BAY

The provision for the future addition of a hydroelectric generating facility has been based on a study for the NWC which indicated that such a facility would probably consist of a single Francis-type turbine generator unit, with an adjacent erection/maintenance bay. The powerhouse would be situated adjacent to the diversion tunnel portal and such that the tailrace from the turbine draft tube would not extend into the path of the jet from the hollow-cone valve at the tunnel portal.

The work would include:

- the excavation of all overburden, boulders and bedrock for the foundation of the sub-structure of the unit and erection bays, including the tailrace excavation;
- the excavation of overburden and bedrock around the sub-structure, and the approaches above the level of the sub-structure to a sufficient distance to permit future excavation for the superstructure and permanent access to be undertaken using controlled blasting techniques;
- the construction of the reinforced concrete downstream wall of the substructure of the unit and erection bays and a portion of the draft tube deck (to provide access to the diversion tunnel), and a portion of the side walls of the unit bay;
- the provision of an opening in the downstream wall of the unit bay equipped with slots and embedded metalwork to accommodate the future installation of a draft tube bulkhead gate;
- the provision of an opening in the unit bay side wall to accommodate a future access gallery within the sub-structure; and
- post-tensioned anchoring of the side walls, and tensioned rock anchors and consolidation and curtain grouting beneath the perimeter footing of the downstream sub-structure wall.

The opening in the downstream wall for the draft tube gate would allow drainage from the catchment formed by the dam and the canyon walls. If the generating facility is constructed this drainage path would be closed off. Consequently, to avoid water ponding behind the powerhouse, two small circular openings would also be provided in the downstream wall at each end to accommodate future drainage culverts. These would be plugged temporarily to dewater the skeleton bay and construct the sub-structure.

3.9 MISCELLANEOUS WORKS

The road leading to the crest of the dam would have to be temporarily diverted around the work during construction, and would then be relocated on a bridge on the downstream side of the regulating structure.

The Nechako River channel downstream of the dam would be improved to convey discharges without erosion, particularly in the vicinity of the dam construction disposal area on the left bank. The toe of the disposal area would be protected with rock from excavations.

4. DISCUSSION OF LAYOUT

4.1 MIXING FACILITY

The layout does not include a facility specifically to mix surface and deep water from the high-level outlet prior to its discharge into the Nechako Canyon, which the Management Committee requested be included. This is because we have been unable to develop a hydraulic concept that we are confident would function satisfactorily. However, we believe that the desire for a mixing facility stemmed from our caveat that temperature shears could occur with the original Case E because of inadequate mixing of the water in the spillway chute. However, there are significant differences between the original Case E and the present concept. In the original layout, the water was released through three outlets in separate chutes which merged gradually, and only after the separate flows had gathered momentum. In the present concept, there would be four outlets (two surface and two deep-water), and a surface and a deep-water outlet would discharge side by side into each of two converging bays before they enter the chute. The surfacewater outlets are angled towards the deep-water outlets to cause the jets to impinge upon and mingle with the deep-water jets. Model tests would be required to show how effective this simple method is in beginning the mixing process which would continue in the main chute. If the mixing is insufficient, then several relatively inexpensive options could be used to improve the mixing, such as: adding curved fillets to the chute sides to rotate the flow initially or adding angled ramps to the floor of the chute.

It has been suggested⁽²⁾ that mixing could be accomplished by creating a pool at the head of the spillway chute. The pool would be created by an ogee-crested weir, which would, in effect, create a hydraulic jump stilling basin. However, our calculations suggest that a weir of fixed height is unlikely to work satisfactorily at all discharges and under all reservoir levels, although model tests would be required to confirm this because the circumstances not being readily amenable to reliable calculation. The stilling basin approach would also require a wider spillway with higher walls a) because the height of a hydraulic jump for 450 m³/s is in the range of 8.5 to 10.5 m and would require walls 11.25 to 13.25 m high to provide freeboard, and b) because a substantial amount of energy is dissipated in a properly formed hydraulic jump, and the loss in energy results in lower velocities, which would require a greater flow area, i.e. a wider chute, higher walls or a combination of the two.

However, we have a more fundamental concern with creating hydraulic jumps of any appreciable depth, and that is the potential increase in dissolved gas levels. Strong hydraulic jumps are invariably accompanied by a roller at the leading edge and considerable turbulence, which entrain large quantities of air into the jump. The sequent water depths which would result for flows in the range of 170 m^3 /s to 450 m^3 /s envisaged for this facility are in the range of 5.5 to 10 m, i.e.

producing maximum hydrostatic pressures of approximately 0.5 to 1.0 atmosphere, pressures readily capable of causing air to be absorbed into the water.

Ideally, one would want flows up to 170 m^3 /s, the maximum cooling flow, to be mixed, and flows in excess of this, which would be predominantly, if not entirely, surface water, to be discharged without interference. In this context, it may be possible to develop a relatively low sill on the floor of the chute which will encourage mixing through a riffle, but which would not produce a hydraulic jump, at least not at discharges beyond, for example, 100 to 120 m³/s. This could be model tested in the current concept.

4.2 VORTICITY

There is a strong possibility that the curved alignment of the surface-water intake channel would produce rotational eddies in the flow. These eddies could lead to vortices occurring at the surface-water intakes, which, if they are severe enough, could reduce the capacity of the intakes, unless preventative measures are taken. At low reservoir levels and maximum discharge, neither the high-level outlet intakes nor the low-level outlet intake provide the depth of submergence recommended in the literature to avoid vortices. Providing sufficient submergence would have required the regulating structure and low-level outlet intake structure, and the surface-water intake channel and deep-water culverts to have been set up to 4 m deeper than in the current layout, resulting in a substantial increase in cost. Increasing the width of the intake gates, the other means of achieving the recommended submergence was investigated but found to be impractical.

However, in addition to the increase in cost, we were not satisfied that increasing the submergence would actually overcome the potential for vortices. Our experience, as a result of model testing the KCP KDRF low-level outlet intake, indicates that vortices resulting from rotational eddies would tend to occur at high reservoir levels, when the depth of submergence substantially exceeds the recommended amount. This is because the flow is relatively tranquil and minor disturbances have the opportunity to develop into strong coherent patterns. At low reservoir levels, the velocities increase and the flow becomes turbulent and eddies do not have an opportunity to develop into coherent patterns. If model tests do indicate a vortex problem, then a vortex raft, a floating grillage of timber beams, could be provided. A vortex raft was successful at the KCP KDRF intake and was included in the final design. A vortex raft has also been used successfully at the West Tahtsa power intake to the Kemano tunnel.

4.3 OTHER CONCEPTS

The possibility of developing a facility with a regulating structure and high level tunnel arrangement similar to that developed for the KCP KDRF should not be

ruled out. Review of the data suggests that a facility with a capacity of 450 m³/s could probably be developed. However, the hydraulics of such a structure are complex and are not readily amenable to reliable study by calculation. Gate sizes and other hydraulic data for the KCP KDRF were largely determined empirically from model tests.

5. CONSTRUCTION PLANNING

5.1 SITE ACCESS

Principal access to the site, for construction equipment, personnel and materials, would be from Highway 16 via the existing Holy Cross Forest Service Road from Fraser Lake and the Kenney Dam Road from Vanderhoof. These roads provide access to the left (south west) and right (north east) abutments of Kenney Dam, respectively. Although Alcan owns the dam and the land around it, Alcan allows public use of the dam crest road which links the Holy Cross Road and the Kenney Dam Road. The dam provides the only crossing of the Nechako River in the area, and is relatively heavily used by logging and other traffic. Consequently, it has been assumed that pubic access would have to be maintained during construction of the water release facility. The manner and sequence of construction would have to accommodate this requirement, as described later.

It has been assumed that the principal area for disposal of excavated material would be the borrow area for the original dam construction situated on the right side of the Nechako Canyon just downstream of the dam. Access to this area would be by original dam construction haul roads from the Kenney Dam Road. Excavated material would also be used for construction of bank protection and other channel improvements in the old Nechako River channel downstream of the spillway, and access to this area would also be primarily by original haul roads.

The original dam construction quarry upstream of the dam on the left bank would serve as the area for lay down, and for assembly and launching of the deepwater pipelines. There is existing access to the quarry, and this would be maintained until removal of the temporary rock plug at the entrance to the surface-water channel.

Some upgrading of the original haul roads and some short sections of new temporary roads would be required.

5.2 TEMPORARY WORKS

The site work areas would include a lay down area, site offices, an aggregate process plant, a concrete batching plant and a construction camp. It has been assumed that the offices and camp would be located at the site already prepared for the construction of the KCP KDRF, just downstream of the dam on the right bank. The location of the aggregate process plant would depend on the final location of the borrow areas. The batch plant would be installed close to the job site in order to keep transportation costs to a minimum. The principal lay down area would be in the vicinity of the launching area for the deep water intake pipes in the quarry.

The camp would accommodate approximately 110 people and would consist of bedrooms, kitchen, dining, recreation and washroom facilities. An appropriate sewage system would be required to deal with all sanitary waste.

The Kenney Dam area does not have mains electricity, and generators would therefore be required to provide power to the offices, camp, and other facilities.

Water would be pumped from the reservoir, and a small water filtration/treatment plant could be required to provide potable water.

A telephone communication system would be installed to serve both offices and the camp.

5.3 CONSTRUCTION PLANNING

5.3.1 General

For planning purposes, the project has been divided into the five major areas of work, namely:

- surface-water intake channel;
- regulating structure;
- spillway and flip bucket;
- low-level outlet and skeleton hydro bay; and
- deep-water intakes and pipelines.

5.3.2 Surface Water Intake Channel

Because of the requirement to maintain public access, the surface-water intake channel would be constructed in three stages.

Stage 1 would be limited to bulk excavation of the overburden and rock down to the general site formation level, approximately El. 860 m, and would include the excavation to this level for the regulating structure and spillway. Stage 1 would also include the excavation necessary to relocate the public access to the dam crest road around the site to the south and east of the regulating structure. Traffic would then be diverted and further work on the surface-water intake channel would be delayed until the regulating structure construction is sufficiently advanced to allow the public traffic to be relocated over this structure. The overburden and rock would be hauled across the dam to the designated disposal area.

Stage 2 would start as soon as the public traffic has been relocated over the regulating structure. This stage would include rock excavation down to final grade, excluding the temporary rock plug at the entrance, and would include the

low-level outlet intake, and the construction of the concrete deep-water culverts and the low-level outlet intake structure. The rock would be hauled up a series of ramps within the excavation and to the designated disposal area. Some double handling would be required when the excavation reaches the lower elevations. The structures would be constructed using a combination of cranes and concrete pumps.

Stage 3 would be the removal of the rock plug, most of which is underwater. Drilling of the rock would be done from the existing ground, and with drills mounted on the Flexifloats provided for the deep-water pipeline construction, which would be modified to accommodate the drills. Underwater explosives would be used and would be loaded through temporary casing pipes.

On land disposal, rather than underwater disposal has been assumed for the present estimate. Rock and overburden material would be excavated using clamshell equipment mounted on the reconfigured Flexifloats and would be loaded onto flat scows made up of Flexifloats. The scows would be towed to the right (north east) end of the dam and unloaded using front end loaders onto trucks which would haul the materials to the designated disposal area.

5.3.3 Regulating Structure

After the public traffic has been diverted to the south and east of the regulating structure, the excavation of the regulating structure and the spillway would continue below El. 860 m. The excavated material would be hauled down hill, within the confines of the structures, to the designated disposal area.

The structure would be constructed using a combination of cranes and concrete pumps. The gates and gantry crane would be installed, tested and commissioned prior to the removal of the surface-water intake channel rock plug.

5.3.4 Spillway and Flip Bucket

The excavation of the spillway and flip bucket would be done simultaneously with the excavation for the regulating structure.

The structure would be constructed using a combination of cranes and concrete pumps. Rock anchors would be installed through the spillway chute slab and in the flip bucket.

5.3.5 Low-Level Outlet and Skeleton Hydro Bay

The intake would be constructed simultaneously with the deep-water culverts. The intake gates would be installed, tested and commissioned prior to the removal of the rock plug at the entrance to the surface-water channel.

The short section of upper tunnel would be excavated from the surface-water intake channel when that work has reached grade.

The lower tunnel would be driven from the existing dam construction diversion tunnel with access from the existing portal near the toe of the dam on the left bank. Prior to the start of the lower tunnel excavation, rock support would be installed in the diversion tunnel around the "portal" of the new tunnel. The tunnel would be excavated using controlled drill and blast techniques. The tunnel has been located at a safe minimum distance from the existing diversion tunnel plug. The short stub tunnel at the right side of the diversion tunnel near the downstream end, which would permit the future addition of a hydroelectric facility, would also be excavated.

The inclined shaft section would be excavated using an Alimak System. Firstly a pilot shaft raise would be excavated from the lower tunnel to the upper tunnel and this would then be slashed to size. All excavated material would be dropped to the lower tunnel and transported to the designated disposal area through the diversion tunnel.

The concrete lining would begin with the concreting of the lower bend and then working outwards towards the portal. The steel lining would then be installed in sections and concrete backfill placed behind the lining as each section is installed. The pipeline extensions of the steel lining and the valves would be installed, including the bifurcation and stub penstock for a future hydroelectric facility, followed by the remaining concrete work in the diversion tunnel.

The shaft concrete lining would commence after the lower bend is complete and would progress up the shaft using a climbing form system. Concrete would be delivered and placed by pump and tremie pipes.

Excavation of overburden and bedrock for the skeleton hydro bay would interrupt access to the diversion tunnel unless an alternative access is provided. Providing an alternative access could be relatively costly due to the steep rock walls of the canyon in the vicinity. Consequently, it has been assumed that excavation and construction of the skeleton hydro bay would be undertaken after the completion of the work in the diversion tunnel.

5.3.6 Deep-Water Intake and Pipelines

The construction of the deep-water pipelines is by far the most challenging aspect of the project. For the purpose of the estimate, it has been assumed the contractor would elect to site weld the pipelines into sections on shore and side launch them into the lake ready to be towed out and placed. The launching area for the pipes would be similar to a ship construction side launching yard with rails set to slope down to and into the lake.

The deep-water intake pipes could be partially fabricated off site and transported to the site in short half-barrel lengths, where they would be welded up to form two sets of three major pieces, or they could be fabricated completely on site from flat plate. The three major pieces consist of a bottom sloping section complete with the bellmouth intake and trashrack, a curved mid section, and an upper near horizontal section.

Prior to launching, each section would be fitted with inflatable bulkheads at each end for initial floatation. The sections would be launched and further floatation devices would be fitted to the outside of the pipes and the inflatable bulkheads would be removed. A system of Flexifloats would be used for transporting the pieces from the launching area to the dam. The Flexifloats would be joined together in pairs by a pipe lifting/lowering yoke structure. The pipes would then be suspended from the yoke between the Flexifloats. A service boat will be used to tow and position the Flexifloats.

The lower pipeline support has to be constructed underwater in water depths of approximately 60 m. The original KCP KDRF design called for a steel platform with cylindrical steel casing legs supported by a grillage of steel beams to be custom-fabricated to suit the bedrock profile. The platform would be lowered to the bottom of the reservoir and pile anchor holes would be drilled into the bed rock through the steel casings using off-shore oil drilling techniques either from a spud-equipped barge or, if climatic conditions and the schedule permit, from the ice in winter, artificially thickened if necessary. The same principal has been retained in the current concept, but a simpler steel structure, which would be filled with tremied concrete for support and ballast, has been assumed. The underwater work would inevitably involve human intervention, either in the form of divers or manned submersibles. The water depth and altitude would permit unaided divers to stay underwater for only very short periods. It is therefore envisaged that a contractor employing divers would elect to use aided systems, such as the Newtsuit, or the Exo-suit currently being developed by Nuytco Research of North Vancouver, or to use saturation diving techniques. (A number of difficult underwater construction projects have been completed in recent years using divers and remotely operated vehicles [ROV], including the construction of an intake structure in Lake Mead, USA, under 80 m of water.) When the supporting platform and anchors have been installed, the pipeline support from would be lowered and attached to the platform.

Because of the length and shape of the assembled main spans of the pipelines, it is envisaged that the straight lower sections and the arched upper sections would be joined whilst in the floating position. It is doubtful that the connection could be accomplished successfully by welding. Consequently, for the present concept, it has been assumed that a bolted flanged connection would be provided to facilitate the work.

The upper mid support would be in shallower water at a maximum depth of approximately 20 m and therefore does not present the same problem as the lower support. The upper mid support would be constructed after removal of the channel rock plug. Once the this support is in place the pipelines would be installed.

The second upper support would be constructed in the dry behind the channel rock plug.

The pipes would be towed into position and lowered using the Flexifloat yokes and by adjusting the pressures in the buoyancy devices. Divers or a manned submersible would do the final bolting up of the pieces. A specially designed bolting machine could also be used if this is found to be cost effective.

6. COST ESTIMATE AND SCHEDULE

6.1 CONSTRUCTION SCHEDULE

To enable the variable indirect costs and other components of the construction cost to be estimated, a preliminary construction schedule was prepared using the Primavera P3 Version 3 Project Management software.

Most of the major operations, which are critical, were based on working single 10 hour shifts for 6 days per week.

The schedule Work Breakdown Structure (WBS) was divided into four major elements: General, Civil, Structures, and Mechanical and Electrical.

The General section includes mobilization, site set up, camp, temporary access roads and erection of the aggregate processing and concrete batch plants.

The Civil and Structures sections are divided into the Surface-Water Intake Channel, Regulating Structure, Spillway and Flip Bucket, Low-Level Outlet, Skeleton Hydro Bay, and Deep-Water Intake and Pipes.

The Mechanical and Electrical section is divided into the Regulating Structure and Low Level Outlet.

The preliminary schedule is shown in Figure 4.

6.2 COST ESTIMATE

6.2.1 Basis of Estimate

The estimate is based on a preliminary quantity take-off, the construction sequence outlined in Section 5, the preliminary construction schedule, and the construction methods and equipment generally associated with this type of work. However, potential contractors would base their tenders on the equipment and personnel available to them at the time of tender, and on their own construction methods, providing these meet all of the requirements of the Contract.

The estimate was prepared using the G2 Estimating System, which is a database system containing cost data on labour, equipment, and materials.

<u>Labour</u>

The labour costs are based on unionized labour rates and conditions. The average hourly rates used include, where applicable, all fringe benefits, trade costs, overtime pay and shift differentials.

The costs for camp, travel and small tools are included in the indirect costs.

Equipment

The equipment rates include depreciation, insurance, spare parts and fuel/oil/grease. The equipment operators are included as labour and the mechanics are included in the indirect costs.

The equipment depreciation rates are those calculated from average current capital costs and normal average industry running costs.

<u>Materials</u>

All permanent materials and job supplies are based on current average budget prices.

6.2.2 Work Breakdown Structure (WBS)

The cost estimate utilizes a work breakdown structure (WBS) as follows:-

Direct Costs

These are costs of the hands on labour, equipment and materials required to perform the work.

Fixed Indirect Cost - Mobilize

This cost includes the mobilization of the equipment to the job site and the set up of the site infrastructure. The site infrastructure costs include temporary roads, offices, camp, lay down areas, and process and batch plant set up.

Variable Indirect Costs

These are the costs of all on-going non-direct work items and are normally spread back into the direct unit cost items. The costs include, but are not limited to, monthly maintenance and operating expenses, contractors on-site management staff, first aid, travel expenses, warehouse operation, small tools and supplies, mechanics, camp running cost, transportation and miscellaneous equipment, other miscellaneous items, performance bonds and insurances, head office administration and contractor's profit.

Fixed Indirect Cost Demobilize

This cost includes the demobilization of the equipment from the job site, and the clearing and restoration of the site.

<u>Taxes</u>

The provincial sales tax (PST) of 7% is included in the estimated costs, where applicable, and applies to equipment and materials costs. The goods and services tax (GST) is <u>not included</u> but should be applied at 7% to all costs.

Contingency

In view of the conceptual nature of the layout and structures, and the fact that the structures would occupy some areas outside those previously investigated for the KCP KDRF, contingencies of 30% of the estimated cost of the marine works and 20% of the estimated cost of the other facilities have been included for changes due to final design and for the conditions encountered.

Engineering/Project Management

A percentage allowance has been included for investigations, final design, engineering assistance to the owner during the tendering process, construction and environmental monitoring, and the production of a construction report and record drawings.

Owner's Costs

The estimate does <u>not include</u> Owner's costs and financing costs, including interest during construction. The estimate also does not include any costs associated with federal and provincial environmental review and permitting.

Escalation

The estimate has been prepared using costs at the April 2001 level. The Management Committee must add an amount for escalation, depending upon the anticipated date of construction.

6.2.3 Estimated Construction Cost

The total estimated construction cost, including engineering, is \$96 million. The cost estimate is summarized in Table 6-1, and the details of the cost estimate are presented in Appendix A.

6.3 OPERATING AND MAINTENANCE COSTS

The operator of an existing water release facility would be the best source of information on the annual operating and maintenance cost of such a facility. The federal Department of Fisheries and Oceans operates a water release facility at Fulton River, and could be approached by the Management Committee to provide information on its annual operating and maintenance costs. However, to our knowledge, the Fulton River facility is not as complex as the facility

contemplated for Kenney Dam. We are not aware of a water release facility of the complexity of that contemplated for Kenney Dam. Hence, we have no firm basis for an estimate of the annual cost of operating and maintaining such a facility. Nevertheless, we have made an estimate based on the data available in the literature for utilities operating and maintaining hydraulic structures and hydroelectric generating stations.

BC Hydro and other utilities typically allow 0.7% to 0.75% of the capital cost for annual operation and maintenance costs in budget estimates for hydroelectric According to studies by Ontario Hydro⁽³⁾, engineering generating stations. represented approximately 10% of the annual O&M cost for hydroelectric stations, dams and reservoirs represented a further 20 to 30%, and mechanical and electrical equipment represented approximately 40 to 50%. Assuming that the entity which would operate the water release facility would not have a permanent engineering staff, that a water release facility would represent no more than half the annual cost for dams and reservoirs, and that, in the absence of hydroelectric turbines and generators, the gates and other equipment at the water release facility would cost no more than a third of the annual mechanical and electrical equipment cost, then the annual operation and maintenance cost of a water release facility could be expected to be about 47.5% of the cost of a hydroelectric generating station. Assuming the typical utility allowance of 0.7% of the capital cost, then the annual operation and maintenance cost of a water release facility could be expected to be about 0.33% of the capital cost, i.e. about \$320,000 p.a.

From another perspective, the largest components of the annual cost are likely to be the salaries, wages and associated costs for the resident operator, an annual visit by a service crew, and a shift operator during the cooling water period, including transportation, housing, and power. We estimate these to be in the order of \$135,000 p.a. An allowance of \$25,000 for facility power costs, and minor repairs and spare parts, would bring the annual cost to about \$160,000. A reserve fund for future major repairs and maintenance would also be required. Assuming a discount rate of 8%, an allowance for a reserve fund could amount to about \$70,000 p.a., bringing the total annual cost to \$230,000.

Hence, the annual cost of operating and maintaining a water release facility could be in the range of \$230,000 to \$320,000 p.a.

REFERENCES

- 1. KDRF Working Group. "Conceptual Alternatives for a Release Facility at Kenney Dam". An Interim Report of the KDRF Working Group, April 1996.
- 2. SNC-Lavalin Inc. "Kenney Dam Water Release Facility Review of Conceptual Design Final Report", October 2000.
- 3. Wong, C.T. "Determining O&M Costs Over the Life of a Hydro Station", Hydro Review, December 1990.

LIST OF TABLES

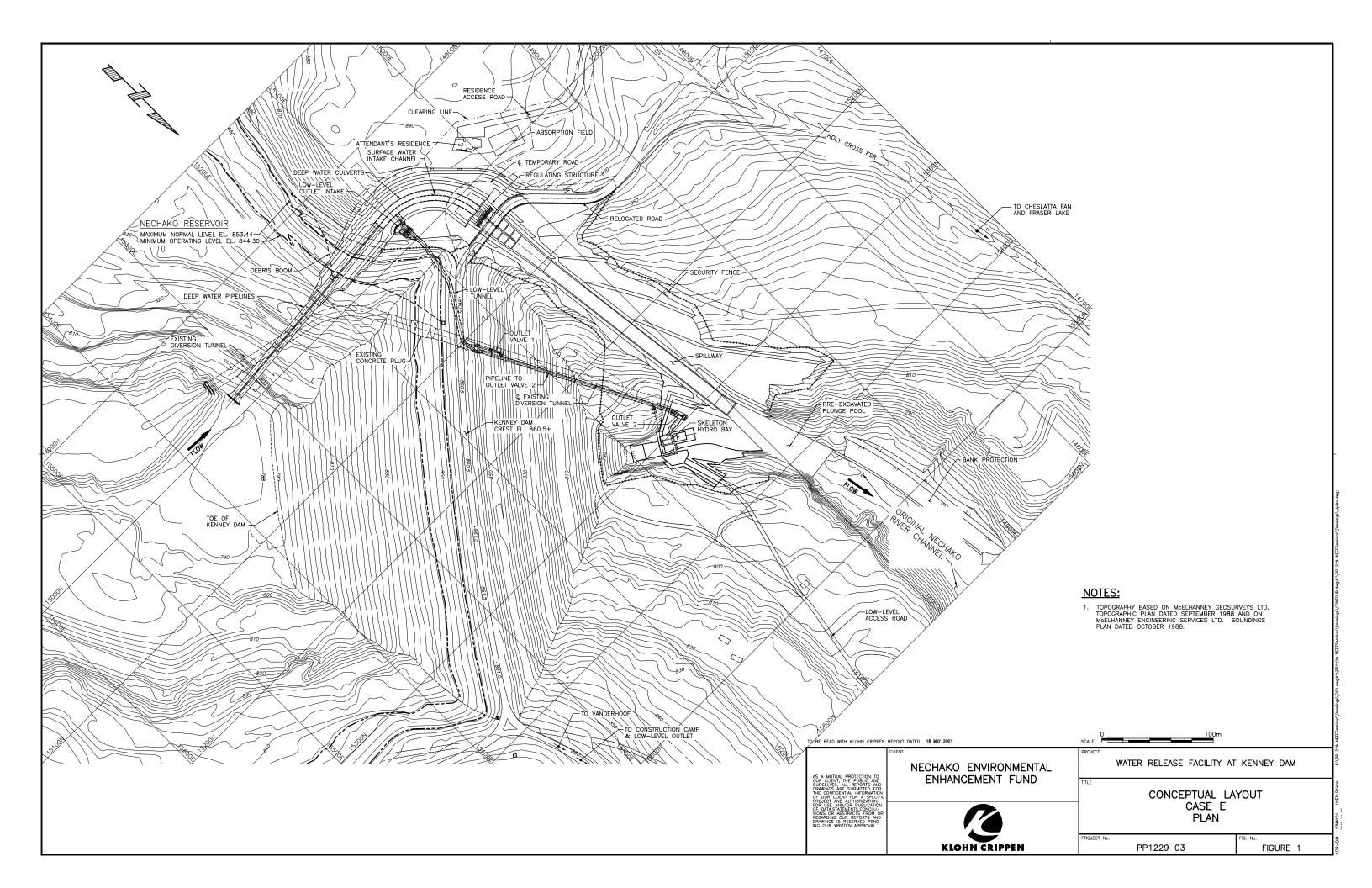
Table No.

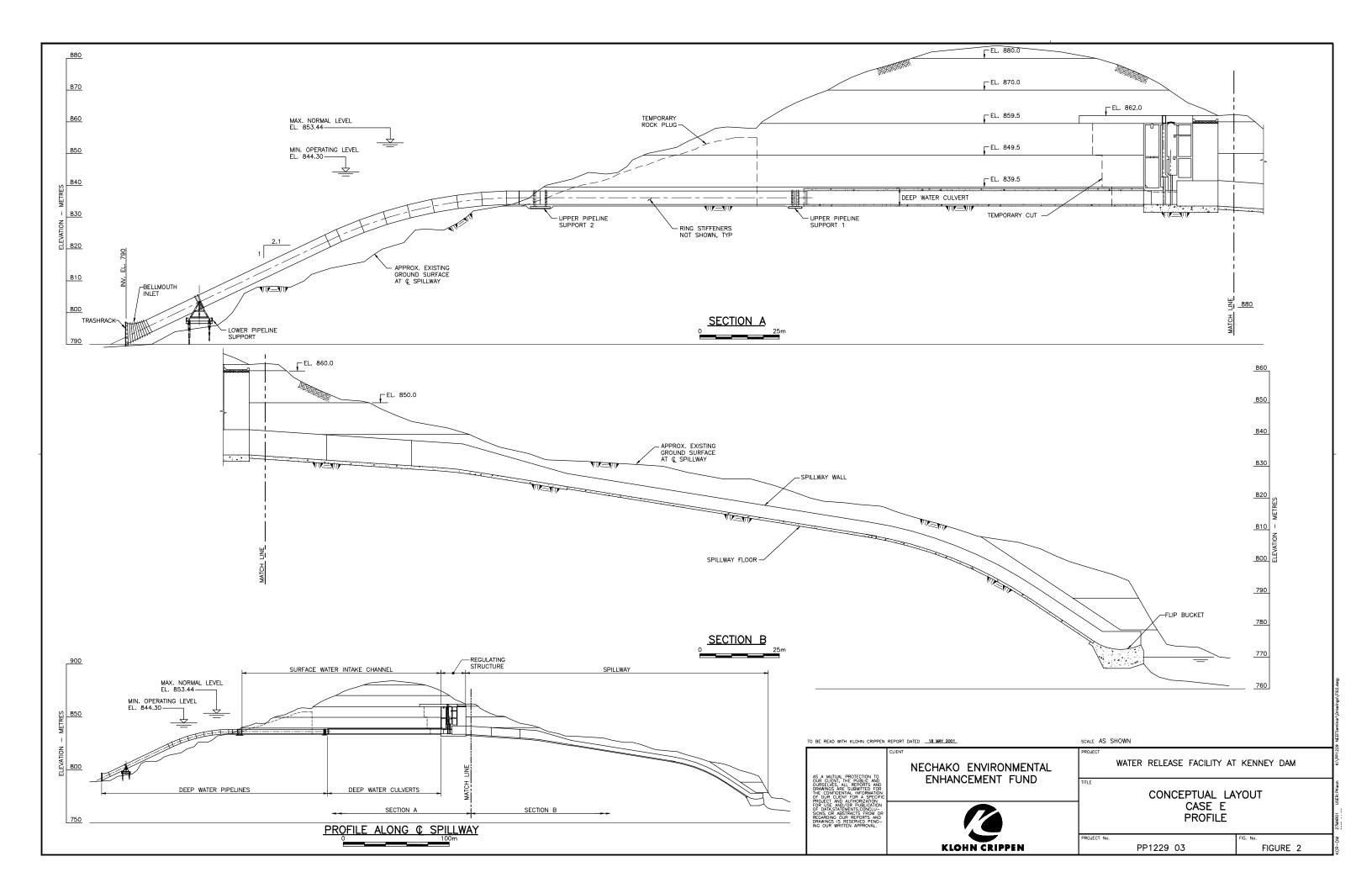
6-1 Summary of Estimated Construction Cost

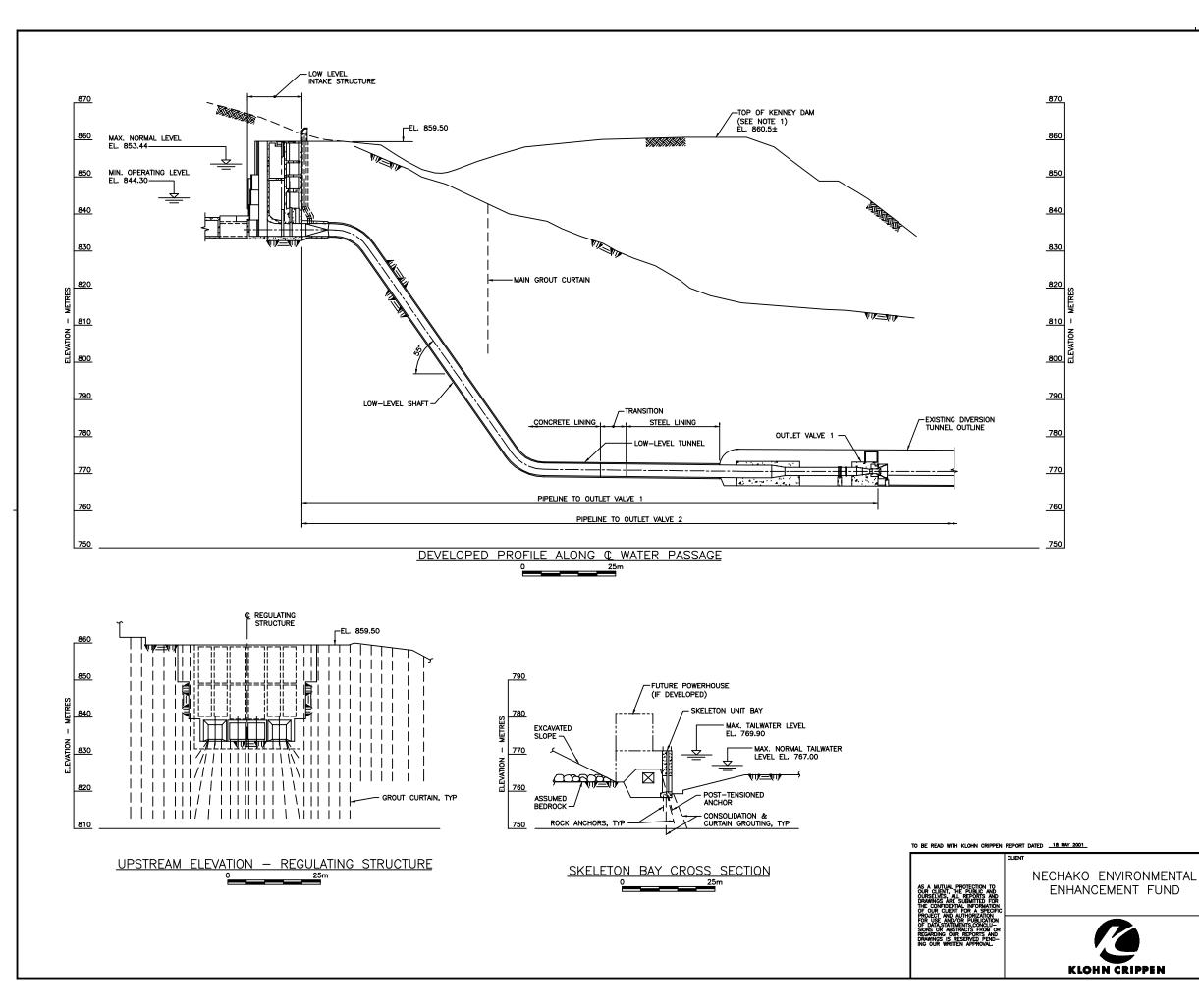
Table 6-1

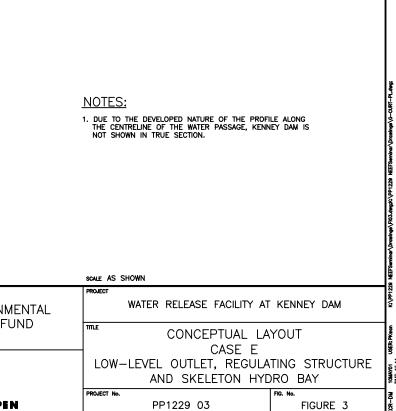
Summary of Estimated Construction Cost

ITEM	DESCRIPTION	ESTIMATED COST (\$1,000)
01	Deep-Water Intakes and Pipelines	10,876
02	Deep-Water Culverts	1,171
03	Surface-Water Intake Channel	3,342
04	Regulating Structure	6,461
05	Spillway and Flip Bucket	7,478
06	Low-Level Outlet	8,884
07	General Site Works	2,454
08	Skeleton Bay Future Hydro	762
09	Fixed Indirect Costs (Mobilize)	1,388
10	Variable Indirect Costs	25,885
11	Fixed Indirect Costs (Demobilize)	573
12	Marine Mobilize and Demobilize	1,522
13	Contingency for Design/Conditions Variations	17,000
14	Sub-Total Estimated Construction Costs	87,797
15	Investigations and Preliminary Engineering	1,250
16	Detailed Engineering (4%)	3,600
17	Construction Services (3.75%)	3,300
18	Total Estimated Project Cost	95,947


Note:


The above estimated costs are in April 2001 dollars and include PST, but do not include Owner's costs, including financing and any costs associated with federal and provincial environmental review and permitting, and also do not include escalation and GST.


LIST OF FIGURES


Figure No.

- 1 Conceptual Layout Case E Plan
- 2 Conceptual Layout Case E Profile
- 3 Conceptual Layout Case E Low-Level Outlet, Regulating Structure and Skeleton Hydro Bay
- 4 Preliminary Construction Schedule

Activity	Activity	Orig	Tota	ı ———																								
ID	Description		Float		2		3 4	1	5	6	7	8	9	10	11	12	13	14	15	16	<u>Mo</u>	onths 18	19	20	0 2	:1 2	2	23
GENERAL										1							1		1	1								
General		-				j				i I	i I		i i			i I	i i		i I	i I			1					
01.01.001	Award of Contract	0		Awar		1	I.			1			1				1			1								
01.01.002	Mobilize to Site	22		2	Mobil			_		1	1		i	1		1	1		1	1			I.					
01.01.003	Install Camp Facilities	30			V	1	stall Cam	-		1																		
01.01.004	Install Offices & Workshops	30		′	Y		nstall Off			1			- 						-		+	- +	-+					
01.01.006	Set Up Aggregate Process Plant	22	41			Se	t Up Aggi	-		1	ant		i						1									
01.01.007	Set up Batch Plant	22	41				Set	up Ba	atch P	lant							1		1	1			I.	▼				
01.01.005	Set up Pipe Launch Yard/Slipway	30	100)																						Set up	o Pipe	e Laun
01.01.011	Demobilize & Clear Site	10	C)		l I	l I				1		i I			l I	I I		l l	1			1			I I		
CIVIL						1			1	 																		
	r Intake & Pipes		1														1		1	1							.	
02.02.005	Construct Upper Pipe Support	5	120	2		I.	l I		i		1		I I			1	I I		I I	 			I. I		⊔Cor	nstruct l	Jppei	? Pipe \$
02.02.001	Fabricate Pipes	60	72	2						11 11 - 1							1									V		
02.02.002	Fabricate Lower Pipe Support	60	82	2		i							i			i i			I I				i I				T	
02.02.003	Assemble, Fabricate & Launch Pipes	60	72	2		l l	l l		i				l I				1		1	1			I I					
02.02.004	Install Lower Pipe Support	20	82	2						11 11 51							1		1	1								
02.02.006	Construct Mid Pipe Support	10	30)		I	I						I															
02.02.007	Install Pipes	15	30						I		1		1				1		1	1			I.					
Surface Wa	ater Intake Channel	1			V		1				1		1			1	1			1		11						
02.04.001	Clear & Grub U/S Regulating Structure	2	c		Clear	& Gri	ub U/S Re	egula	ting S	tructur	e		i I	i I		i I	I I		I I	I I			i I			i I		
02.04.002	Exc.Overburden U/S of Regulating Structure	15	C)		Exc.O	verburde	en U/S	S of R	egulatir	ng Str	ucture					1			1			I.					
02.04.003	Exc.& Support Rock U/S of Reg.Str. to El	60	C)				E	xc.& S	Support	Rock	U/S of Re	eg.Str. t	o El 459	.5		1		1	1			1					
02.04.004	Prepare & Divert Public Road	5	C)					Prepa	re & Div	vert P	ublic Roa	d	l I		l I	I I		l I	l I			I I			i I		
02.04.005	Exc.& Support Rock to Grade	60	c)					1	1 - 1															Exc.&	Support	Rock	to Gr
02.04.006	Exc.Channel Plug	45	30							1 1 1	1		1				 		 			1						
Regulating			1							 !	1								1	1				-				
02.05.001	Divert Traffic over Regulating Structure	0	C)													1		1	1		Diver	t Traffic (over R	egulati د	ng Struc	cture	
Spillway &	Flip Bucket	1	1		V		I				1		i I			1	1		T T	1			1					
02.06.001	Clear & Grub Reg. Struct. & Spillway	5	10)	Clea	ar & G	irub Reg.	. Stru	ct. & S	Spillway	/						1		1									
02.06.002	Exc.Overburden Reg.Struct.& Spillway	42	c	D			1	Exc.	Overb	urden l	Reg.S	truct.& Sp	pillway			i I	i I		I I	i I			I I			l I		
02.06.003	Exc.& Support Rock Reg.Str.& Spillway	60	C			i i			ŕ	Exc.& S	uppo	rt Rock R	eg.Str.8	Spillwa	ıy		1		I I	1								
Low Level	Outlet					1					1		1			1	1		1	1		V						
02.07.003	Install Rock Support & Drains Existing	20	5	5		I.	l I				1		I I			1	I I		I I	1			Install R ▼	lock S	upport	& Drain	s Exis	sting T
02.07.004	Excavate & Support Lower Tunnel	15	5	5													1					T	Ex	cavate	e & Sup	port Lov	wer T	unnel
02.07.005	Excavate Pilot Shaft	25	5	5							1		i I				1		1	1				<u> </u>	Excava	ate Pilot	Shaft	t
02.07.001	Exc. & Support Rock at Intake	15	C				1				1		1				1		1	1					Exc. &	Support	t Roc	k at In
02.07.002	Excavate & Support Upper Tunnel	5	C)							 						1 		1 	1 					Exca	vate & S	Suppo	ort Upp
02.07.006	Shaft Slash & Support	25	C							1	- 					1	1		1	1				1		Sha	ft Sla	ish & S
02.07.007	Concrete Liner Shaft & Tunnel	80	C	5							1						1											_
02.07.008	Install Steel Liner & Concrete	15		5									i I						- - -	 								, ,
02.07.009	Install Pipes and Valves in Exist.Tunnel	20		5							1						1		I I	1								
02.07.010	Complete Concrete Work Existing Tunnel	20		5													1		1	1								
	ay Future Hydro									- 									+ 			<u> </u>		+	++			
02.08.004	Excavate Stub Tunnel	5	90								1						1		1	1			V Df	Excava	ate Stul	o Tunnel	I +	
02.08.001	Clear & Grub	2		5							 						1		-	1								
02.08.002	Excavate Overburden	20				i I	I			l I	1		i I			l l	1		1	1			l I			i I		
02.08.003	Excavate & Support Rock	10		<u> </u>						1	1		1				1		1	1			I.					1
Start Date	Cavale & Support Rock			<u> </u>							 	DR1	1	1		1	1		1	1		Char	t 1 of 2	<u> </u>				
Finish Date	08AUG	603								Early Bar Progress E												0166	1012			4		7
Data Date Run Date	01MAF 10MAY01 16									Critical Act				WATE	R RELE	EASE F			KENNE	Y DAN	I							
														PREL	IMINA	KY COI	NSTRU	CTION	SCHE	DULE						_		
	© Primavera Systems, Inc.																								K	LOH	Ν	CRI

24	25	26	27	28	29	30	31	32	33	34
				1		 	1			
						1 [[1	
			1 	1 			1 		1	
			 	 		t T T	 			
			1 1 1	1 1 1		I I I	 		 	
ch Yard	/Slipwa	y	I I I	1 1 1		(1 1 1		 	
 			 	 		Demo	bilize &	Clear S	ite	
			I I I	1 1 1		l I I	1 1 1		 	
Support			 	1 1 1		l (
	icate Pi					i I I			- 	
Fabr			oe Supp e, Fabri	1	aumah I	Dimoo	 		- 	
Y	1		r Pipe S		aunch	ripes			1	
				1	t Mid Pi	pe Supp	ort		 	
			† 	1	all Pipe	1	1		1	
			1 	 		I I I	 		 	
				1 1 1		l Í	1 1 1		 	
				1 1 1		l L	 		1	
de	÷					i L				
			Exc.C	hannel	Plug	1 	 		1	
	T		1	 			 		 	
			I I I	 		I I I	 		 	
			 	 		I I I	 		 	
			 	 		(
unnel			 	 		l I I	 		 	
			 	 		l L	 		1	
						i I				
ake			 	 		Î Î	 		 	
er Tunn	el		 	, 		1	, 		 	
ipport			Liner Sh	- 4 0 T					1	
nstall S			uner Sr		unnei		1 		1	
			and Valv	es in E	kist.Tun	nel	1 		1	
1		Compl	ete Con	crete W	ork Exis	sting Tu	nnel		1 	
			0 O	1 1 1		I I I	1 1 1		 	
			& Grub	I	rburden	T T	1 1 1		 	
			•	I		rt Rock	1		1	
	1						I		-	
						FIGU	RE 4			
PPE	Ν									

Activity	Activity	Orig	Total																	Ma	atha					
ID	Description	Dur	Float	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	nths 18	19	20 2	1 22	2 :	23
STRUCTURE	S					1	1			1		i i	1							4	1	1		i		
Deep Water	Conduits																		1		1		V			
03.03.001	Construct Deep Water Conduits	100	30			1 						1									1					
Regulating	Structure						1	1				1									1		1	I		
03.05.001	Construct Regulating Structure	260	0			l I	1		1	1		1	l		1 1				1		Construc	t Regulat	ing Struct	ure		
Spillway & I	Flip Bucket							1				1														
03.06.001	Construct Spillway	260	5			1				1		1			1 1				1		Construc	t Spillwa	y			
Low Level C	Dutlet					1	1		1	1		1							1			1	V	l I		
03.07.001	Construct Intake Structure	60	45			1			1	1		1									1					
Skeleton Ba	y Future Hydro	-					1					1										1				V
03.08.004	Install Pipe Junction	5	0			 				i I		i			i i						1		i i			
03.08.005	Concrete Pipe Junction	5	0			1	1		1	1		1							1		1		l I			
03.08.003	Consolidation Grouting	10	0			1				1									1		1					
03.08.001	Construct Skeleton Bay	35	0									1											l I			
03.08.002	Install Anchors	3	0			1				1																
MECHANICA	L & ELECTRICAL					1	1		1	1		1			 				1			1	I.			
Regulating	Structure	1	1			1						1														
04.05.001	Install Gates	60	130			1															/		Install	Gates		-
04.05.004	Install Hoist	22	168			 				 		 										nstall Hoi	st +	+		-
04.05.002	Install Bulkheads	20	170			1				1											In	stall Bulk	heads			-
04.05.003	Install Trash Racks	20	170			 	 		 									 		ĺ	In	stall Tras	h Racks	·		-
Low Level C	Dutlet						1		1						 				1			1	I.	l		V
04.07.001	Install Gates & Bulkheads	20	45			1	1		1	1		1									1					

S	Start Date	01MAR01	Early Bar	KDR1 Sheet 2 of 2	
F	Finish Date	08AUG03			
	Data Date	01MAR01	Progress Bar		
F	Run Date	10MAY01 16:34	Critical Activity	WATER RELEASE FACILITY AT KENNEY DAM	
				PRELIMINARY CONSTRUCTION SCHEDULE	
		© Primavera Systems, Inc.			KLOHN C

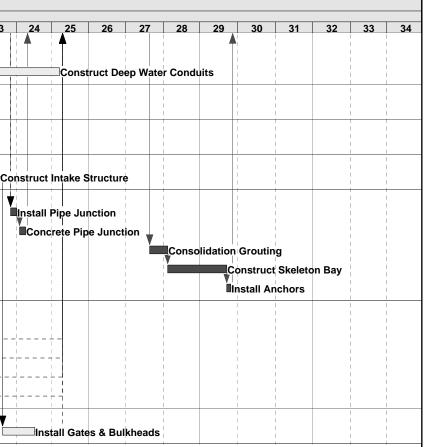


FIGURE 4

APPENDIX A

DETAILS OF COST ESTIMATE

.

Standard Cost Summary

Standard Co	st Summary													Paç	ge 1
WorkCode.01.00.01	Description	Quantity	Unit	Manhours	Labor	Equipment	Materials	Supplies	Subcontracts	(Not Used)	Total Cost				
01	DEEP WATER INTAKES &			5,190	260,876	29,386	480,275	55,514	10,050,000						10,876,051
	PIPELINES														
02	DEEP WATER CONDUITS			14,726	560,308	38,602	499,018	73,370							1,171,298
03	SURFACE WATER INTAKE CHANNEL			21,238	780,662	638,202	634,273	1,288,745							3,341,882
04	REGULATING STRUCTURE			36,575	1,389,946	105,501	1,217,947	146,393	3,601,500						6,461,286
05	SPILLWAY & FLIP BUCKET			71,304	2,681,428	665,785	3,068,108	1,037,088	26,000						7,478,410
06	LOW LEVEL OUTLET			46,216	1,791,059	173,418	3,397,676	420,631	3,101,400						8,884,184
07	GENERAL			425	15,776	18,123		20,372	2,399,250						2,453,520
08	SKELETON BAY FUTURE HYDRO			7,295	276,237	78,856	273,680	129,002	3,850						761,625
11	FIXED INDIRECT COSTS(MOBILIZE)			11,106	421,350	76,979		484,928	405,000						1,388,257
12	VARIABLE INDIRECT COSTS			27,003	6,800,631	1,062,023		11,921,136	6,101,600						25,885,390
13	CONTINGENCY							17,000,000							17,000,000
14	FIXED INDIRECT COSTS(DEMOBILIZE)			4,200	159,679	20,785		37,732	355,000						573,196
15	MARINE MOBILIZE/DEMOBILI	IZE		3,600	137,390	1,048,002		261,334	75,000						1,521,726
Grand Total]		248,879	15,275,343	3,955,660	9,570,977	32,876,246	26,118,600						87,796,826

•

Standard Co	st Summary													Paç	ge 1
WorkSheet Number	Description	Quantity	Unit	Manhours	Labor	Equipment	Materials	Supplies	Subcontracts	(Not Used)	Total Cost				
WorkCode.01.0	0.01 01 DEEP WATER	INTAKES	& PIPI	ELINES											
01.01.001	Supply Pipelines and Fittings	1,000.00	TNE						10,000,000						10,000,000
01.01.003	Prepare and launch pipes	1.00	LS	400	14,489	6,647		5,123							26,259
01.01.004	Lower Support Prepare Bed	1.00	LS	140	8,045	477		1,623							10,145
01.01.005	Fabricate Lower Base Support Frames	1.00	EA				375,000								375,000
01.01.006	Install Lower Support Frame Base	1.00	EA	650	31,375	7,109	75,000	18,244							131,727
01.01.007	Install Anchors in base	1.00	LS	450	16,241	7,962	11,650	13,925							49,778
01.01.008	Install Lower Support Trunnion Frame	1.00	EA	130	6,275	1,422		1,249							8,945
01.01.009	Middle Support Prepare Bed	1.00	LS	70	4,022	239		812							5,073
01.01.010	Middle Support Frame Base	1.00	EA	260	12,550	2,844	10,500	4,997							30,891
01.01.011	Upper Dry Support Base	1.00	LS	210	7,877	442	8,125	1,151							17,594
01.01.012	Install Pipes	1.00	LS	2,880	160,002	2,245		8,393							170,639
01.01.013	Underwater Surveys	1.00	LS						50,000						50,000
01 DEEP WAT	ER INTAKES & PIPELINE	:S		5,190	260,876	29,386	480,275	55,514	10,050,000						10,876,051
WorkCode.01.0	00.01 02 DEEP WATER	CONDUIT	S												
02.02.001	Fabricate Formwork	470.00	M2	1,689	64,080	2,335		36,855							103,270
02.02.002	Erect & Strip Formwork	2,800.00	M2	8,750	334,547	22,162	238	20,861							377,808
02.02.003	Reinforcement	157,000.00	KG	2,896	109,458	6,627	133,450	5,466							255,002
02.02.004	Concrete Placing	2,100.00	M3	1,016	37,223	7,477	330,330	5,188							380,218
02.02.005	Concrete Sundries not Measured	1.00	LS	375	15,000		35,000	5,000							55,000
02 DEEP WAT	ER CONDUITS			14,726	560,308	38,602	499,018	73,370							1,171,298
WorkCode.01.0	00.01 03 SURFACE WA		КЕ СН	ANNEL											
03.01.001	Medium Clear & Grub	1.30	HA	91	3,351	1,302		1,281							5,934
03.01.002	Overburden Excavation	19,300.00	M3	1,061	39,363	47,984		57,309							144,656

Standard Cost Summary

WorkSheet Number	Description	Quantity	Unit	Manhours	Labor	Equipment	Materials	Supplies	Subcontracts	(Not Used)	Total Cost				
03.01.003	Drill & Blast Rock Stage 1 to El 859.5	106,300.00	M3	2,430	89,161	33,041		201,982							324,184
03.01.004	Excavate Rock Stage 1 to El	106,300.00	М3	3,697	137,959	208,935		261,129							608,023
03.01.005	Drill & Blast Rock Stage 2 to grade	67,000.00	M3	2,436	89,405	33,132		177,061							299,598
03.01.006	Excavate Rock Stage 2 to grade	67,000.00	М3	3,076	114,746	177,959		226,455							519,160
03.01.007	Rock Bolts 25mm dia.* 4m lg. to EI.859.5	635.00	EA	900	32,417	6,356	37,846	15,649							92,269
03.01.008	50mm dia.*6m lg. Relief Drains to El 859.5	147.00	EA	239	8,636	2,207	7,056	5,434							23,333
03.01.009	F.R.Shotcrete 50mm Thick to EI.859.5	1,265.00	M2	206	7,442	1,009	51,802	1,417							61,669
03.01.010	F.R.Shotcrete 100mm Thick to E 859.5	l 926.00	M2	301	10,895	1,478	70,422	2,074							84,869
03.01.011	W.W.Fabric to El 859.5	926.00	M2	208	7,498	592	3,816	1,569							13,475
03.01.012	Rock Bolts 25mm dia.* 4m lg. to Grade	799.00	EA	1,132	40,790	7,998	47,620	19,691							116,099
03.01.013	50mm dia.*6m lg. Relief Drains to Grade	96.00	EA	156	5,640	1,441	4,608	3,549							15,238
03.01.014	F.R.Shotcrete 50mm Thick to Grade	2,414.00	M2	392	14,201	1,926	98,853	2,703							117,684
03.01.015	F.R.Shotcrete 100mm Thick to Grade	1,064.00	M2	346	12,518	1,698	80,917	2,383							97,517
03.01.016	W.W.Fabric to Grade	1,064.00	M2	239	8,615	680	4,385	1,803							15,483
03.01.017	Rock Anch. 32mm dia.* 4m lg. Grade	338.00	EA	718	25,883	5,075	210,777	14,362							256,096
03.01.018	Rock Bolts 25mm dia.* 4m lg. to Plug	154.00	EA	218	7,862	1,542	9,178	3,795							22,377
03.01.019	50mm dia.*6m lg. Relief Drains to Plug	16.00	EA	26	940	240	768	591							2,540
03.01.020	F.R.Shotcrete 50mm Thick to Plug	152.00	M2	25	894	121	6,224	170							7,410
03.01.021	Plug Rock Drill & Blast (WET)	22,900.00	М3	1,145	41,987	20,207		198,619							260,814
03.01.022	Plug Rock & Overburden Excavation (WET)	24,700.00	M3	2,196	80,459	83,277		89,717							253,453
03 SURFACE V	VATER INTAKE CHANNE			21,238	780,662	638,202	634,273	1,288,745							3,341,882

Page

2

Standard Cost Summary

WorkSheet Number Description Quantity Unit Manhours Labor Equipment Materials Supplies Subcontracts (Not Used) (Not Used) (Not Used) (Not Used) (Not Used) Total Cost 04 REGULATING STRUCTURE WorkCode.01.00.01 04.01.001 Rockfill 1,700.00 M3 51 1,985 1,305 1,324 4,615 04.01.002 Curtain Grouting Drilling 1,500.00 Μ 450 17,412 7,356 7,259 32,027 04.01.003 Curtain Grouting - Grouting 225,000.00 KG 900 32.193 3.582 48.263 8.286 92.324 04.02.001 Fabricate Formwork M2 3,191 121,070 888.00 4,412 36,347 161,829 04.02.002 Erect & Strip Formwork 7,100.00 M2 22,188 848,317 56,197 1,569 56,518 962,601 04.02.003 Reinforcement 352,000.00 KG 6,492 245,409 14,859 299,200 12,255 571,723 04.02.004 Concrete Placing 5,650.00 M3 2,418 88,559 785,915 12,404 17,789 904,668 04.02.005 Concrete Sundries not Measured 1.00 LS 885 35,000 83,000 12,000 130,000 04.02.006 Misc.Metal Regulating Structure 33,500.00 KG 201,000 201,000 04.03.001 Deep Water Regulating Gates 42.00 TNE 630,000 630,000 incl.Embeds 04.03.002 Surface Water Regulating Gates 56.00 TNE 840,000 840,000 incl.Embeds 04.03.003 Deep Water Bulkheads 22.00 TNE 286,000 286,000 incl.Embeds 04.03.004 Surface Water Bulkheads 26.50 TNE 344,500 344,500 incl Embeds 04.03.006 Supply & Install Rotork Hoists 4.00 EA 1,000,000 1,000,000 04.03.007 Supply & Install Gantry Crane 1.00 EA 300,000 300,000 04 REGULATING STRUCTURE 36,575 1,389,946 105,501 1,217,947 146,393 3,601,500 6,461,286 WorkCode.01.00.01 05 SPILLWAY & FLIP BUCKET 05.01.001 Medium Clear & Grub 4.40 HA 308 11,343 4,407 4,335 20,085 05.01.002 Overburden Excavation 59,700.00 M3 2,289 84,946 104,607 118,089 307,642 05.01.003 Drill & Blast Rock 76,800.00 M3 3,072 112,731 41,775 182,525 337,031 05.01.004 Excavate Rock to Grade 76,800.00 M3 3,072 114,624 216,961 505,180 173,595 05.01.005 Rock Bolts 25mm dia.* 4m lg. to 1,022.00 ΕA 1,448 52,174 10,230 60,911 25,187 148,502 Grade 05.01.006 9,282 2,372 25,079 50mm dia.*6m lg. Relief Drains 158.00 ΕA 257 7,584 5,841 to Grade 05.01.007 F.R.Shotcrete 50mm Thick to 5,221.00 M2 848 30,713 4,166 213,800 5,847 254,526 Grade

Page 3

Materials

.

Equipment

Standard Cost Summary

Description

Quantity

Unit

2,170.00 M3

1.00 LS

Manhours

Labor

3,632

98

4,026

17,876

5,002

WorkSheet Number

Supplies	Subcontracts	(Not Used)	Total Cost				
3,183							130,236
2,408							20,678
34,842							621,299

05.01.008	F.R.Shotcrete 100mm Thick to Grade	1,421.00	M2	462	16,718	2,268	108,067	3,183			130,236
05.01.009	W.W.Fabric to Grade	1,421.00	M2	320	11,506	908	5,856	2,408			20,678
05.01.010	Rock Anch. 32mm dia.* 4m lg. Grade	820.00	EA	1,743	62,793	12,312	511,352	34,842			621,299
05.01.020	Hydroseeding	13,000.00	M2						26,000		26,000
05.01.021	Medium Clear & Grub Plunge Pool	0.40	HA	28	1,031	401		394			1,826
05.01.022	Overburden Excavation Plunge Pool	7,000.00	M3	268	9,960	12,265		13,846			36,072
05.01.023	Drill & Blast Rock Plunge Pool	28,000.00	М3	560	20,639	6,692		51,286			78,617
05.01.024	Excavate Rock to Grade Plunge Pool	28,000.00	M3	980	36,583	54,685		67,215			158,484
05.01.025	Place Rockfill to Left Bank Protection	12,500.00	M3	375	13,846	14,309		13,058			41,213
05.02.001	Fabricate Formwork	1,031.00	M2	3,705	140,567	5,123		42,200			187,890
05.02.002	Erect & Strip Formwork	8,235.00	M2	25,734	983,928	65,180	1,820	65,553		1,	,116,481
05.02.003	Reinforcement	652,000.00	KG	12,026	454,564	27,523	554,200	22,700		1,	,058,988
05.02.004	Erect & Strip Chute & Apron Screeds	1.00	LS	1,800	68,266			10,000			78,266
05.02.005	Concrete Placing	8,725.00	М3	3,874	141,870	28,498	1,259,018	19,841		1,	449,227
05.02.006	36mm*5m long Rock Anchors	530.00	EA	4,240	155,099	56,712	142,835	76,256			430,903
05.02.007	36mm*7m long Rock Anchors	235.00	EA	2,686	98,243	37,756	88,666	39,520			264,185
05.02.008	Concrete Sundries not Measured	1.00	LS	1,210	50,000		114,000	16,000			180,000
05 SPILLWAY	& FLIP BUCKET			71,304	2,681,428	665,785	3,068,108	1,037,088	26,000	7,	478,410
WorkCode.01.	00.01 06 LOW LEVEL OU	JTLET									
06.01.001	Tunnel Excavation	62.00	М	1,653	78,110	26,591		112,373			217,074
06.01.002	Pilot Shaft Excavation	79.00	М	1,717	81,109	24,051		37,305			142,465
06.01.003	Shaft Slash Excavation	79.00	М	1,580	74,226	18,439		30,320			122,985

12,660

17,876

Page

4

Muck from Portal Area to

Dumpsite Rock Support

06.01.004

06.01.005

.

Standard Cost Summary

Page 5

VorkSheet Number	Description	Quantity	Unit	Manhours	Labor	Equipment	Materials	Supplies	Subcontracts	(Not Used)	Total Cos				
06.01.006	Drill & Blast Rock at Intake	3,960.00	M3	352	12,917	4,787		23,401							41,10
06.01.007	Excavate Rock Intake	3,960.00	М3	138	5,139	7,783		9,728							22,65
06.01.008	F.R.Shotcrete 50mm Thick to Intake	580.00	M2	94	3,412	463	23,751	650							28,27
06.01.009	F.R.Shotcrete 100mm Thick to Intake	580.00	M2	189	6,824	926	44,109	1,299							53,15
06.01.010	W.W.Fabric to Intake	580.00	M2	131	4,696	371	2,390	983							8,44
06.01.011	Rock Anch. 32mm dia.* 4m lg. to Intake	290.00	EA	616	22,207	4,354	180,844	12,322							219,72
06.01.021	Exist.Tunnel Rock Anchors	175.00	EA	263	9,566	3,028	8,260	3,405							24,25
06.01.022	Exist.Tunnel Fibre Reinf.Shotcrete	70.00	M3	140	5,131	1,217	53,235	716							60,30
06.01.023	Exist.Tunnel Relief Drains	15.00	EA	5	188	197		278							66
6.02.001	Fabricate Formwork Intake	323.00	M2	1,161	44,038	1,605		15,961							61,60
06.02.002	Erect & Strip Formwork Intake	2,580.00	M2	8,063	308,262	20,421	921	22,834							352,43
06.02.003	Reinforcement Intake	142,000.00	KG	2,619	99,000	5,994	120,700	4,944							230,63
06.02.004	Concrete Placing Intake	1,990.00	М3	907	33,232	6,676	294,918	4,643							339,46
06.02.005	Concrete Sundries not Measured Intake	1.00	LS	340	14,000		31,000	5,000							50,00
06.02.006	Fabricate Formwork	185.00	M2	1,773	67,315	2,913		11,779							82,00
06.02.007	E & S Formwork	1,265.00	M2	6,958	263,860			10,391							274,25
06.02.008	Reinforcement	5,000.00	KG	200	7,577		4,250								11,82
06.02.009	Steel Liner	52.00	TNE	555	20,888	2,132	260,000	13,383							296,40
06.02.010	Concrete Liner	875.00	M3	875	31,817	1,825	114,844	7,822							156,30
06.02.011	Contact Grouting	1.00	LS	200	7,290	1,365	2,500	6,120							17,27
06.02.012	Consolidation Grouting	1.00	LS	400	14,581	2,673	5,000	2,282							24,53
06.02.013	Concrete Sundries Low Level Outlet	1.00	LS	296	12,000		27,000	4,000							43,00
06.02.021	Steel Pipe in Exist.Tunnel	280.00	TNE	4,978	187,457	19,130	1,680,000	37,170							1,923,75
06.02.022	Fabricate Formwork Exist.Tunnel	335.00	M2	1,204	45,674	1,665		14,773							62,11
06.02.023	Erect & Strip Formwork Exist.Tunnel	1,340.00	M2	4,188	159,859	5,327		8,059							173,24
06.02.024	Reinforcement Exist.Tunnel	119,000.00	KG	2,195	82,848	2,523	101,150	2,876							189,39
6.02.025	Concrete Placing Exist.Tunnel	2,820.00	M3	2,030	74,203	2,938	395,928	4,814							477,88

.

Standard Cost Summary

Page 6

WorkSheet Number	Description	Quantity	Unit	Manhours	Labor	Equipment	Materials	Supplies	Subcontracts	(Not Used)	Total Cos				
06.02.026	Concrete Sundries not Measured	1.00	LS	300	10,000		29,000	6,000							45,000
	Exist Tunnel														
06.02.027	Misc. Metal LLO	5,000.00	KG						30,000						30,000
06.03.001	Surface Water Gate incl.Embeds	20.10	TNE						301,500						301,500
06.03.002	Surface Water Bulkhead incl.Embeds	7.30	TNE						94,900						94,900
06.03.003	Deep Water Gate incl.Embeds	20.10	TNE						301,500						301,500
06.03.004	Deep Water Bulkhead incl.Embeds	7.30	TNE						94,900						94,900
06.03.005	Skimming Bulkhead incl.Embeds	22.20	TNE						288,600						288,600
06.03.006	LLO Heating & Ventilation	1.00	LS						130,000						130,000
06.03.007	LLO Hollow Cone Valves	2.00	EA						700,000						700,000
06.03.008	LLO Butterfly Valves	2.00	EA						340,000						340,000
06.03.009	LLO Dresser Couplings	2.00	EA						20,000						20,000
06.03.010	LLO Trashrack	10.00	TNE						100,000						100,000
06.03.011	LLO Rotork Hoists	2.00	EA						500,000						500,000
06.03.012	LLO Winch Hoists	2.00	EA						200,000						200,000
06 LOW LEVE	LOUTLET			46,216	1,791,059	173,418	3,397,676	420,631	3,101,400						8,884,184
WorkCode.01.0	0.01 07 GENERAL														
07.01.001	Medium Clear & Grub	0.60	HA	42	1,547	601		591							2,739
07.01.002	Overburden Excavation	10,000.00	M3	383	14,229	17,522		19,780							51,53 ⁻
07.01.003	Fencing & Gates	1.00	LS						73,250						73,250
07.01.004	Operators House Incl.Furnishings	1.00	LS						425,000						425,000
07.01.005	Roads & Yards	1.00	LS						50,000						50,000
07.01.006	Septic Disposal System	1.00	LS						43,000						43,000
07.03.001	Plumbing	1.00	LS						10,000						10,000
07.03.002	Domestic Water System	1.00	LS						11,000						11,000
07.03.003	Station Drainage	1.00	LS						11,000						11,000
07.03.004	Heating & Ventilation	1.00	LS						19,000						19,000

.

Standard Cost Summary

Standard Cos	st Summary													Paç	ge 7
WorkSheet Number	Description	Quantity	Unit	Manhours	Labor	Equipment	Materials	Supplies	Subcontracts	(Not Used)	Total Cost				
07.04.001	Coating, Cable & Trays	1.00	LS						25,000						25,000
07.04.002	Diesel Generating System	1.00	LS						107,000						107,000
07.04.003	Power Distribution System	1.00	LS						404,000						404,000
07.04.004	Data Collection System	1.00	LS						43,000						43,000
07.04.005	Telephone System	1.00	LS						381,000						381,000
07.04.006	Instrumentation	1.00	LS						387,000						387,000
07.04.007	Lighting & 120v Power Distribution	1.00	LS						207,000						207,000
07.04.008	Grounding System	1.00	LS						144,000						144,000
07.04.009	Fire Alarm System	1.00	LS						38,000						38,000
07.04.010	Security Alarm System	1.00	LS						21,000						21,000
		=													
07 GENERAL				425	15,776	18,123		20,372	2,399,250						2,453,520
WorkCode.01.0	0.01 08 SKELETON B	AY FUTURI	E HYD	RO											
08.01.001	Medium Clear & Grub	0.20	HA	14	516	200		197							913
08.01.002	Overburden Excavation	18,000.00	M3	690	25,612	31,540		35,605							92,756
08.01.003	Drill & Blast Rock	3,400.00	M3	272	9,981	3,699		12,423							26,103
08.01.004	Excavate Rock to Grade	3,400.00	M3	272	10,149	13,281		16,324							39,753
08.01.005	Rock Bolts 25mm dia.* 4m lg. to Grade	60.00	EA	85	3,063	601	3,576	1,479							8,718
08.01.006	Rock Anch. 32mm dia.* 4m lg. Grade	55.00	EA	117	4,212	826	5,038	2,014							12,090
08.01.007	F.R.Shotcrete 50mm Thick to Grade	200.00	M2	33	1,177	160	8,190	224							9,750
08.01.009	W.W.Fabric to Grade	200.00	M2	45	1,619	128	824	339							2,910
08.01.011	Stub Tunnel Excavation	7.00	М	165	7,781	2,649		11,646							22,076
08.01.012	Stub Tunnel Rock Support	1.00	LS				1,698								1,698
08.01.013	Muck from Portal Area to Dumpsite	76.00	MЗ	3	127	141		175							443
08.01.021	Consolidation Grouting Drilling	280.00	М	120	4,643	1,962		1,812							8,416
08.01.022	Consolidation Grouting - Grouting	42,000.00	KG	240	8,585	955	8,190	3,672							21,402

Standard Cost Summary

Description Manhours (Not Used) WorkSheet Number Quantity Unit Labor Equipment Materials Supplies Subcontracts (Not Used) (Not Used) (Not Used) (Not Used) Total Cost 08.02.001 Fabricate Formwork 138.00 M2 496 18,815 686 5,648 25,149 08.02.002 Erect & Strip Formwork 825.00 M2 2,578 98,572 6,530 182 6,567 111,852 48,450 92,580 08.02.003 Reinforcement 57,000.00 KG 1,051 39,740 2,406 1,985 08.02.004 Concrete Placing 750.00 M3 321 11,756 2,361 110,175 1,647 125,939 08.02.005 Concrete Sundries not Measured 1.00 LS 18,000 18,000 36mm*15m long Rock Anchors 4,682 3,850 08.02.006 4.00 EA 128 6,561 1,790 16,883 08.02.010 Steel Liner/Blind Flange 9.00 TNE 1,203 63,000 3,755 79,747 313 11,789 08.02.011 Concrete Liner 14.00 M3 22 840 29 1,838 1,125 3,832 08.02.021 Supply and Install Stoplog Guides 3.60 TNE 240 9,229 2,533 18,000 2,089 31,851 08.02.022 Fabricate Formwork Guides 4.00 M2 5 197 4 146 347 63 08.02.023 Erect & Strip Formwork Guides 10.00 M2 31 1,189 61 1,314 670 08.02.025 Concrete Placing 5.00 M3 53 1,963 339 280 3,251 08.02.026 S & I Handrails 550.00 KG 3,850 3,850 **08 SKELETON BAY FUTURE HYDRO** 7,295 276,237 273,680 129,002 3,850 78,856 761,625

WorkCode.01.00.01 11 FIXED INDIRECT COSTS(MOBILIZE)

11.11.001	Freight equipment to site.	1.00	LS					280,000	280,000
11.11.002	Assemble equipment at site	1.00	LS	1,600	60,464	7,558	6,448		74,470
11.11.003	Medium Clear & Grub Temp.Facilities	2.40	HA	168	6,187	2,404	2,365		10,955
11.11.004	Level & Compact Temp.Facilitiy Area	2.40	HA	288	10,668	9,169	97,393		117,230
11.11.005	Install Temp.Utilities & Services	1.00	LS	2,800	102,799	9,396	158,098		270,293
11.11.006	Erect Offices & Workshops	1.00	LS	2,800	107,504	15,116	22,896		145,516
11.11.007	Office Furnishings	1.00	LS				70,000		70,000
11.11.008	Install Camp	1.00	LS					125,000	125,000
11.11.009	Erect Process Plant	1.00	LS	750	28,362	1,890	16,612		46,864
11.11.010	Erect Batch Plant	1.00	LS	1,500	56,725	3,779	18,224		78,728
11.11.011	Temporary Access Roads	1.00	LS	1,200	44,640	27,668	90,893		163,201
11.11.012	Fuel Storage Facility	1.00	LS	0	4,000		2,000		6,000

Page

8

.

Standard Cos	st Summary													Pa	ge s
WorkSheet Number	Description	Quantity	Unit	Manhours	Labor	Equipment	Materials	Supplies	Subcontracts	(Not Used)	Total Cos				
11 FIXED INDIF	RECT COSTS(MOBILIZE)			11,106	421,350	76,979		484,928	405,000						1,388,257
WorkCode.01.0	0.01 12 VARIABLE IND	IRECT CO	OSTS												
12.12.001	Maintain General Facilities	30.00	MON		15,000	9,000		6,000							30,000
12.12.002	Operating Expense	30.00	MON			102,854		53,803	246,000						402,658
12.12.003	On site staff Management	1.00	LS	4,944	4,968,028										4,968,028
12.12.004	Engineering Equip.& Supplies	1.00	LS					100,000							100,000
12.12.005	First Aid & Safety	1.00	LS			6,917		68,590							75,507
12.12.006	Site Photos	1.00	LS						6,000						6,000
12.12.007	Business Travel	30.00	MON						30,000						30,000
12.12.008	Warehouse Operation	1.00	LS	4,944	187,921	15,629		506,019	100,000						809,569
12.12.009	Equipment Shop	1.00	LS	10,000	371,100	71,400		136,900	300,000						879,400
12.12.010	Explosive Magazines	1.00	LS					5,000							5,000
12.12.011	Blasting Consultant	3.00	MON						20,600						20,600
12.12.012	Winter Work Costs	1.00	LS	1,400	52,213	39,179		152,846							244,238
12.12.013	Camp running cost	1.00	LS						2,152,000						2,152,000
12.12.014	Lube & Fuel	1.00	LS	2,000	72,220	19,900		53,510							145,630
12.12.015	Proj.Transport & Misc.Equipment	1.00	LS	3,715	134,149	297,144		338,467							769,760
12.12.016	Travel Expenses	1.00	LS						1,379,000						1,379,000
12.12.017	Misc.Overtime	1.00	LS		1,000,000										1,000,000
12.12.018	Equipment Balance	1.00	LS			500,000									500,000
12.12.019	H.O.Administration Fee	1.00	LS					1,500,000							1,500,000
12.12.020	Bonds	1.00	LS						840,000						840,000
12.12.021	Insurances	1.00	LS						968,000						968,000
12.12.022	Construction Water Treatment	1.00	LS						60,000						60,000
13.13.001	Contractors Profit	1.00	LS					9,000,000							9,000,000

G2 ESTIMATOR (TM)

.

Standard Co	st Summary													Pa	ge 10
WorkSheet Number	Description	Quantity	Unit	Manhours	Labor	Equipment	Materials	Supplies	Subcontracts	(Not Used)	Total Cost				
WorkCode.01.0	00.01 13 CONTINGENC	Y													
13.13.002	Civil Contingency	1.00	LS					11,000,000							11,000,000
13.13.003	Marine Contingency	1.00	LS					6,000,000							6,000,000
13 CONTINGE	NCY	2.000	ILS					17,000,000							17,000,000
WorkCode.01.0	00.01 14 FIXED INDIRE	CT COSTS	(DEMC	OBILIZE)											
14.11.001	Dismantle Offices & Workshops	1.00	LS	1,400	53,752	7,558		6,448							67,758
14.11.002	Dismantle & Remove Camp	1.00	LS						65,000						65,000
14.11.003	Dismantle Process Plant	1.00	LS	400	15,154	1,890		1,612							18,656
14.11.004	Dismantle Batch Plant	1.00	LS	800	30,309	3,779		3,224							37,312
14.11.005	Demob & Tidy Site	1.00	LS					20,000	10,000						30,000
14.11.006	Dismantle & Assemble equipment at site	1.00	LS	1,600	60,464	7,558		6,448							74,470
14.11.007	Freight equipment from site.	1.00	LS						280,000						280,000
14 FIXED INDIRECT COSTS(DEMOBILIZE)		7.000	ILS	4,200	159,679	20,785		37,732	355,000						573,196
WorkCode.01.0	00.01 15 MARINE MOB	ILIZE/DEM	OBILIZ	Σ.											
15.11.100	Excavate & Grade Area Launching Site	1.00	LS	480	17,974	20,104		22,874							60,951
15.11.101	Place & Compact Granular Base	e 1.00	LS	360	13,420	12,701		73,879							100,001

Install winches and anchor pads 1.00 LS 400 16,000 14,000 15.11.103 10,000 15.11.104 Supply of Marine Equipment 1.00 LS 990,000 94,797 Supply and Erect Covered Welding Workshop 15.11.105 1.00 LS 75,000 15.11.106 Erection of Flexifloats for crane 1.00 LS 320 12,118 2,533 2,089 platform 15.11.107 Modify Flexifloats for Winch 1.00 LS 1,040 39,517 5,066 4,178 platforms

17,200

5,066

47,428

Lay Launching Rails

1.00 LS

440

15.11.102

69,693

40,000

75,000

16,739

48,760

1,084,797

•

Standard Cost Summarv

Standard Co	Standard Cost Summary Page														
WorkSheet Number	Description	Quantity	Unit	Manhours	Labor	Equipment	Materials	Supplies	Subcontracts	(Not Used)	Total Cost				
15.11.108	Modify Flexifloats for Plug Drill Platform	1.00	LS	240	9,045										9,045
15.11.109	Modify Flexifloats for crane platform	1.00	LS	320	12,118	2,533		2,089							16,739
		_													
15 MARINE MOBILIZE/DEMOBILIZE		10.000	ILS	3,600	137,390	1,048,002		261,334	75,000						1,521,726
Grand Total				248,879	15,275,343	3,955,660	9,570,977	32,876,246	26,118,600						87,796,826